西南印度洋洋盆演化和岩浆地球化学印迹

李伟, 金振民, 陶春辉. 2021. 西南印度洋洋盆演化和岩浆地球化学印迹. 沉积与特提斯地质, 41(2): 218-231. doi: 10.19826/j.cnki.1009-3850.2021.03006
引用本文: 李伟, 金振民, 陶春辉. 2021. 西南印度洋洋盆演化和岩浆地球化学印迹. 沉积与特提斯地质, 41(2): 218-231. doi: 10.19826/j.cnki.1009-3850.2021.03006
LI Wei, JIN Zhenmin, TAO Chunhui. 2021. Evolution of the Southwest Indian Ocean and its relative geochemical evidences from magmatism. Sedimentary Geology and Tethyan Geology, 41(2): 218-231. doi: 10.19826/j.cnki.1009-3850.2021.03006
Citation: LI Wei, JIN Zhenmin, TAO Chunhui. 2021. Evolution of the Southwest Indian Ocean and its relative geochemical evidences from magmatism. Sedimentary Geology and Tethyan Geology, 41(2): 218-231. doi: 10.19826/j.cnki.1009-3850.2021.03006

西南印度洋洋盆演化和岩浆地球化学印迹

  • 基金项目:

    国家自然科学基金(洋中脊岩石圈地幔的交代变质作用—以西南印度洋“龙旂”热液区为例,41906072)和国家重点研发计划课题(超慢速扩张洋脊局部岩浆供给的深部过程及其成矿效应研究,2018YFC0309902)联合资助

详细信息
    作者简介: 李伟(1989—),男,助理研究员,目前主要从事大洋岩石圈地幔演化和岩石变质作用研究。E-mail:lwttkl89@126.com
  • 中图分类号: P736

Evolution of the Southwest Indian Ocean and its relative geochemical evidences from magmatism

  • 西南印度洋中脊(SWIR)平均扩张速率约为14 mm/yr,是全球洋中脊系统的重要组成端元,因其具有慢速-超慢速扩张特征,引起全球科学家的广泛关注。基于前人对SWIR的综合研究成果,从构造和岩浆作用两个角度出发,系统地回顾了SWIR的形成和演化历史,探讨了岩浆的分布特征和地幔不均一性成因。SWIR的形成始于冈瓦纳大陆的裂解,中段洋脊区域(26~42°E)是印度洋最早开启的窗口,历经多次洋脊跃迁和扩展作用形成了斜向扩张展布,多分段的构造格局。地幔热点在冈瓦纳大陆裂解过程中扮演了关键角色,并对SWIR的洋底地貌和岩浆作用具有显著影响,其中Bouvet和 Marion热点在SWIR的西段和中段岩浆均留下了地球化学印迹。SWIR西段岩浆除却Bouvet热点影响之外表现出与大西洋-太平洋型玄武岩相似的同位素地球化学特征。在SWIR中段,39~41°E附近的岩浆具有显著的DUPAL异常特征,与冈瓦纳大陆的初始形成、裂解紧密相关。受俯冲改造的中—新元古代的造山带岩石圈地幔拆沉是造成SWIR中段地幔不均一性的重要根源。在SWIR东段,46~52°E区域内的局部岩浆组成异常,推测具有大陆地壳物质混染的成因。而在Melville转换断层以东,洋脊形成时间最晚,玄武岩的地幔源区受到了富集组分的交代作用,其同位素组成与相邻的中印度洋中脊(CIR)和东南印度洋中脊(SEIR)地幔源区具有亲缘性。
  • 加载中
  • Acharyya S K, 2000. Break up of Australia-India- Madagascar block, opening of the Indian Ocean and continental accretion in Southeast Asia with special reference to the characteristics of the peri-Indian collision zones[J]. Gondwana Research, 3(4): 425-443.

    Baines A G, Cheadle M J, Dick H J B,et al., 2007. Evolution of the Southwest Indian Ridge from 55°45’E to 62°E: changes in plate-boundary geometry since 26 Ma[J]. Geochemistry, Geophysics, Geosystems, 8(6): Q06022, doi: 10.1029/2006GC001559.

    Ben-Avraham Z, Hartnady C J H, Le Roex A P, 1995. Neotectonic activity on continental fragments in the Southwest Indian Ocean: Agulhas Plateau and Mozambique Ridge[J]. Journal of Geophysical Research, 100(B4): 6199-6211.

    Breton T, Nauret F, Pichat S,et al., 2013. Geochemical heterogeneities within the Crozet hotspot[J]. Earth and Planetary Science Letters, 376: 126-136.

    Buiter S J H, Torsvik T H, 2014. A review of Wilson cycle plate margins: a role for mantle plumes in continental break-up along sutures?[J]. Gondwana Research, 26(2): 627-653.

    Cannat M, Rommevaux-Jestin C, Fujimoto H, 2003. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E)[J]. Geochemistry, Geophysics, Geosystems, 4(8): 9104, doi: 10.1029/2002GC000480.

    Cannat M, Rommevaux-Jestin C, Sauter D,et al., 1999.Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E)[J]. Journal of Geophysical Research, 104(B10): 22825-22843.

    Chatterjee S, Goswami A, Scotese C R, 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 23(1): 238-267.

    Cheng H, Zhou H Y, Yang Q H, et al., 2016. Jurassic zircons from the Southwest Indian Ridge[J]. Scientific Reports, 6: 26260, doi: 10.1038/srep26260.

    Chu D Z, Gordon R G, 1999. Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge[J]. Nature, 398(6722): 64-67.

    Coffin M F, Pringle M S, Duncan R A, et al., 2002. Kerguelen hotspot magma output since 130 Ma[J]. Journal of Petrology, 43(7): 1121-1137.

    Collier J S, MinshullT A, Hammond J O S, et al., 2009. Factors influencing magmatism during continental breakup: new insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins[J]. Journal of Geophysical Research, 114(B3): B03101, doi: 10.1029/2008JB005898.

    Day J M D, Walker R J, Warren J M, 2017.186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys[J]. Geochimica et Cosmochimica Acta, 200: 232-254.

    DeMets C, Gordon R G, Argus D F,et al., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letter, 21(20): 2191-2194.

    Dick H J B, Lin J, Schouten H, 2003. An ultraslow-spreading class of ocean ridge[J]. Nature 426(6965): 405-412.

    Gautheron C, Moreira M, Gerin C,et al., 2015. Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts[J]. Chemical Geology, 417: 163-172.

    Georgen J E, Kurz M D, Dick H J B, et al., 2003. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters, 206(3-4): 509-528.

    Georgen J E, Lin J, Dick H J B, 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters, 187(3-4): 283-300.

    Gregoire M, Mattielli N, Nicollet C, et al., 1994. Oceanic mafic granulite xenoliths from the Kerguelen archipelago[J]. Nature, 367(6461): 360-363.

    Ingle S, Weis D, Frey F A, 2002. Indian continental crust recovered from Elan Bank, Kerguelen plateau (ODP Leg 183, site 1137)[J]. Journal of Petrology, 43(7): 1241-1257.

    Jamieson J W, Clague D A, Hannington M D, 2014. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 395: 136-148.

    Janney P E, Le Roex A P, Carlson R W, 2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E)[J]. Journal of Petrology, 46(12): 2427-2464.

    Jokat W, Boebel T, König M, et al., 2003. Timing and geometry of early Gondwana breakup[J]. Journal of Geophysical Research, 108(B9): 2428, doi: 10.1029/2002JB001802.

    Kempton P D, Pearce J A, Barry T L,et al., 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source[J]. Geochemistry, Geophysics, Geosystems, 3(12): 1-35, doi: 10.1029/2002GC000320.

    Kröner A, 1993. The PanAfrican belt of northeastern and eastern Africa, Madagascar, southern India, Sri Lanka and East Antarctica: terrane amalgamation during formation of the Gondwana supercontinent[M]//Thorweihe U, Schandelmeier H. Geoscientific Research in Northeast Africa. Rotterdam: CRC Press. 3-9.

    Le Roex A P, Chevallier L, Verwoerd W J,et al., 2012. Petrology and geochemistry of Marion and Prince Edward Islands, Southern Ocean: magma chamber processes and source region characteristics[J]. Journal of Volcanology and Geothermal Research, 223-224: 11-28.

    Le Roex A P, Dick H J B, Erlank A J,et al., 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east[J]. Journal of Petrology, 24(3): 267-318.

    Le Roex A P, Dick H J B, Fisher R L, 1989. Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: evidence for contrasting styles of mantle enrichment[J]. Journal of Petrology, 30(4): 947-986.

    Le Roex A P, Dick H J B, Watkins R T, 1992. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53'E to 14°38'E[J]. Contributions to Mineralogy and Petrology, 110(2-3): 253-268.

    Li J B, Jian H C, Chen Y J, et al., 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge[J]. Geophysical Research Letters, 42(8): 2656-2663.

    Li W, Liu C Z, Tao C H, et al., 2019. Osmium isotope compositions and highly siderophile element abundances in abyssal peridotites from the Southwest Indian Ridge: Implications for evolution of the oceanic upper mantle[J]. Lithos, 346-347: 105167.

    Li W, Soustelle V, Jin Z M, et al., 2017. Origins of water content variations in the suboceanic upper mantle: Insight from Southwest Indian Ridge abyssal peridotites[J]. Geochemistry, Geophysics, Geosystems, 18(3): 1298-1329.

    Livermore R A, Hunter R J, 1996. Mesozoic seafloor spreading in the southern Weddell Sea[M]//Storey B C, King E C, Livermore R A. Weddell Sea Tectonics and Gondwana Break-up. Geological Society, London, Special Publications.227-241.

    Macdonald K C, 2001. Mid-ocean ridge tectonics, volcanism, and geomorphology[M]//Steele J H. Encyclopedia of Ocean Sciences.2nd ed. San Diego: Academic Press.852-866.

    Mahoney J, Le Roex A P, Peng Z,et al., 1992. Southwestern limits of Indian Ocean Ridge mantle and the origin of low206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central Southwest Indian Ridge (17°-50°E)[J]. Journal of Geophysical Research, 97(B13): 19771-19790.

    Meyzen C M, Ludden J N, Humler E,et al., 2005. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 6(11): Q11k11, doi: 10.1029/2005GC000979.

    Meyzen C M, Toplis M J, Humler E,et al., 2003. A discontinuity in mantle composition beneath the Southwest Indian Ridge[J]. Nature, 421(6924): 731-733.

    Minshull T A, Lane C I, Collier J S, et al., 2008. The relationship between rifting and magmatism in the northeastern Arabian Sea[J]. Nature Geoscience, 1(7): 463-467.

    Niu X W, Ruan A G, Li J B, et al., 2015. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment[J]. Geochemistry, Geophysics, Geosystems, 16(2): 468-485.

    O’Neill C, Müller D, Steinberger B, 2003. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 215(1-2):151-168.

    Patriat P, Segoufin J, 1988. Reconstruction of the central Indian Ocean[J]. Tectonophysics, 155(1-4): 211-234.

    Pushcharovsky Y M, 2007. Tectonic types of deepwater basins in the Indian Ocean[J]. Geotectonics, 41(5): 355-367.

    Pushcharovsky Y M, 2008. Tectonic types of oceanic abyssal basins and related potentially economic fields of ferromanganese nodules[J]. Geotectonics, 42(4): 245-257.

    Pushcharovsky Y M, 2014. Fragments of continental structures in the Indian Ocean[J]. Geotectonics, 48(1): 1-4.

    Ramana M V, Ramprasad T, Desa M, 2001. Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica[J]. Earth and Planetary Science Letters, 191(3-4): 241-255.

    Rommevaux-Jestin C, Deplus C, Patriat P, 1997. Mantle Bouguer anomaly along an ultra slow-spreading ridge: Implications for accretionary processes and comparison with results from Central Mid-Atlantic Ridge[J]. Marine Geophysical Researches, 19(6): 481-503.

    Royer J Y, Gordon R G, Horner-Johnson B C, 2006. Motion of Nubia relative to Antarctica since11 Ma: implications for Nubia-Somalia, PacificNorth America, and India-Eurasia motion[J]. Geology, 34(6): 501-504.

    Sauter D, Cannat M, 2010. The ultraslow spreading Southwest Indian Ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: American Geophysical Union.153-173.

    Sclater J G, Fisher R L, Patriat P,et al., 1981. Eocene to recent development of the south-west Indian Ridge, a consequence of the evolution of the Indian Ocean Triple Junction[J]. Geophysical Journal International, 64(3): 587-604.

    Seton M, Müller R D, Zahirovic S, et al., 2012. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 113(3-4): 212-270.

    Stagg H M J, Colwel J B, Direen N G, et al., 2004. Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: insights from a regional data set[J]. Marine Geophysical Researches, 25(3-4): 183-219.

    Standish J J, 2006. The influence of ridge geometry at the ultraslow-spreading Southwest Indian Ridge (9°-25°E): basalt composition sensitivity to variations in source and process[D]. Massachusetts: Massachusetts Institute of Technology.

    Standish J J, Dick H J B, Michael P J,et al., 2008. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9-25°E): major element chemistry and the importance of process versus source[J]. Geochemistry, Geophysics, Geosystems, 9(5): Q05004, doi: 10.1029/2008GC001959.

    Storey M, Mahoney J J, Saunders A D,et al., 1995. Timing of hot spot—related volcanism and the breakup of Madagascar and India[J]. Science, 267(5199): 852-855.

    Tao C H, SeyfriedJr W E, Lowell R P, et al., 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications, 11(1): 1300, doi: 10.1038/s41467-020-15062-w.

    Tao C, Lin J, Guo S,et al., 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 40(1): 47-50.

    Torsvik T H, Cocks L R M, 2013. Gondwana from top to base in space and time[J]. Gondwana Research, 24(3-4): 999-1030.

    Weis D, Ingle S, Damasceno D, et al., 2001. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137)[J]. Geology, 29(2): 147-150.

    Whittaker J M, Williams S E, Müller R D, 2013. Revised tectonic evolution of the Eastern IndianOcean[J]. Geochemistry, Geophysics, Geosystems, 14(6): 1891-1909.

    Yang A Y, Zhao T P, Zhou M F, et al., 2017. Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction—A case study at 50°28'E, Southwest Indian Ridge[J]. Journal of Geophysical Research, 121(1): 191-213, doi: 10.1002/2016JB013284.

    Yoshikawa S, Okino K, Asada M, 2012. Geomorphological variations at hydrothermal sites in the southern Mariana Trough:relationship between hydrothermal activity and topographic characteristics[J]. Marine Geology, 303-306: 172-182.

    Yu X, Dick H J B, 2020. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 531: 116002, doi: 10.1016/j.epsl.2019.116002.

    Zhao M H, Qiu X L, Li J B, et al., 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E)[J]. Geochemistry, Geophysics, Geosystems, 14(10): 4544-4563, doi: 10.1002/ggge.20264.

    Zhou H Y, Dick H J B, 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 494(7436): 195-200.

    李江海, 张华添, 李洪林, 2015. 印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展[J]. 海洋学报, 37(7): 1-14.

    李江海, 张华添, 李洪林, 等, 2016. 热点作用背景下的洋中脊跃迁和扩展作用: 印度洋盆地张开过程探讨[J]. 高校地质学报, 22(1): 74-80.

    李三忠, 索艳慧, 刘鑫, 等, 2015b. 印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示[J]. 大地构造与成矿学, 39(1): 30-43.

    李三忠, 索艳慧, 余珊, 等, 2015a. 西南印度洋构造地貌与构造过程[J]. 大地构造与成矿学, 39(1): 15-29.

    李献华, 2021. 超大陆裂解的主要驱动力——地幔柱或深俯冲?[J]. 地质学报, 95(1): 20-31, doi: 10.19762/j.cnki.dizhixuebao.2020267.

    余星, 韩喜球, 唐立梅, 等, 2019. 东南印度洋中脊地质构造特征及研究进展[J]. 科学通报, 64(17): 1799-1816.

    张涛, 林间, 高金耀, 2011. 90 Ma以来热点与西南印度洋中脊的交互作用: 海台与板内海山的形成[J]. 中国科学: 地球科学, 41(6): 760-772.

  • 加载中
计量
  • 文章访问数:  1511
  • PDF下载数:  163
  • 施引文献:  0
出版历程
收稿日期:  2021-01-07
修回日期:  2021-02-27

目录