Evolution of the Southwest Indian Ocean and its relative geochemical evidences from magmatism
-
摘要: 西南印度洋中脊(SWIR)平均扩张速率约为14 mm/yr,是全球洋中脊系统的重要组成端元,因其具有慢速-超慢速扩张特征,引起全球科学家的广泛关注。基于前人对SWIR的综合研究成果,从构造和岩浆作用两个角度出发,系统地回顾了SWIR的形成和演化历史,探讨了岩浆的分布特征和地幔不均一性成因。SWIR的形成始于冈瓦纳大陆的裂解,中段洋脊区域(26~42°E)是印度洋最早开启的窗口,历经多次洋脊跃迁和扩展作用形成了斜向扩张展布,多分段的构造格局。地幔热点在冈瓦纳大陆裂解过程中扮演了关键角色,并对SWIR的洋底地貌和岩浆作用具有显著影响,其中Bouvet和 Marion热点在SWIR的西段和中段岩浆均留下了地球化学印迹。SWIR西段岩浆除却Bouvet热点影响之外表现出与大西洋-太平洋型玄武岩相似的同位素地球化学特征。在SWIR中段,39~41°E附近的岩浆具有显著的DUPAL异常特征,与冈瓦纳大陆的初始形成、裂解紧密相关。受俯冲改造的中—新元古代的造山带岩石圈地幔拆沉是造成SWIR中段地幔不均一性的重要根源。在SWIR东段,46~52°E区域内的局部岩浆组成异常,推测具有大陆地壳物质混染的成因。而在Melville转换断层以东,洋脊形成时间最晚,玄武岩的地幔源区受到了富集组分的交代作用,其同位素组成与相邻的中印度洋中脊(CIR)和东南印度洋中脊(SEIR)地幔源区具有亲缘性。Abstract: The Southwest Indian Ridge(SWIR) is an important component of global mid-oceanic ridge system, and it has been a focus for geo-scientists of the world because of its very slow average spreading rate about 14 mm/y.In this paper, we systematically reviewed,from tectonic and magmatic points of view, the formation and evolution history of SWIR and the distribution of magmatic rocks and the origin of mantle heterogeneity.The formation of SWIR began with the break-up of Gondwana and the middle part of SWIR (26°E to 42°E) was formed in the earliest stages. The present-day tectonic patterns of SWIR (e.g., multi-order ridge segments and oblique spreading) are the results of multi-stage ridge jumps and extensions. The mantle hotspots play a key role in the break-up of Gondwana and have a significant impact on geomorphology and magmatism of SWIR. Both the Bouvet and Marion hotspots have left their geochemical traces in the magmatic rocks in the western and central portions of SWIR.In addition, the basalts from the western part of SWIR show isotopic affinities with the Atlantic-Pacific-type basalts. In the middle part of SWIR(39°E to 41°E), the basalts display significant DUPAL anomalies, which are closely related to the initial formation and break-up of Gondwana.The delamination of subduction-modified lithospheric mantle in the Mesoproterozoic to Nesoproterozoic orogenic belts led to the mantle source heterogeneity in the middle part of SWIR.In the east part of SWIR(about 46°E to 52°E), the chemical anomalies are probably caused by the contamination of continental crust. To the east of the Melville transform fault, the ridge was formed in the latest stages, and the mantle source of basalts experienced metasomatism due to enriched mantle components, showing isotopic affinities with the mantle source of the adjacent Central Indian Ridge (CIR) and Southeast Indian Ridge (SEIR).
-
-
Acharyya S K, 2000. Break up of Australia-India- Madagascar block, opening of the Indian Ocean and continental accretion in Southeast Asia with special reference to the characteristics of the peri-Indian collision zones[J]. Gondwana Research, 3(4): 425-443.
Baines A G, Cheadle M J, Dick H J B,et al., 2007. Evolution of the Southwest Indian Ridge from 55°45’E to 62°E: changes in plate-boundary geometry since 26 Ma[J]. Geochemistry, Geophysics, Geosystems, 8(6): Q06022, doi: 10.1029/2006GC001559.
Ben-Avraham Z, Hartnady C J H, Le Roex A P, 1995. Neotectonic activity on continental fragments in the Southwest Indian Ocean: Agulhas Plateau and Mozambique Ridge[J]. Journal of Geophysical Research, 100(B4): 6199-6211.
Breton T, Nauret F, Pichat S,et al., 2013. Geochemical heterogeneities within the Crozet hotspot[J]. Earth and Planetary Science Letters, 376: 126-136.
Buiter S J H, Torsvik T H, 2014. A review of Wilson cycle plate margins: a role for mantle plumes in continental break-up along sutures?[J]. Gondwana Research, 26(2): 627-653.
Cannat M, Rommevaux-Jestin C, Fujimoto H, 2003. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E)[J]. Geochemistry, Geophysics, Geosystems, 4(8): 9104, doi: 10.1029/2002GC000480.
Cannat M, Rommevaux-Jestin C, Sauter D,et al., 1999.Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E)[J]. Journal of Geophysical Research, 104(B10): 22825-22843.
Chatterjee S, Goswami A, Scotese C R, 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 23(1): 238-267.
Cheng H, Zhou H Y, Yang Q H, et al., 2016. Jurassic zircons from the Southwest Indian Ridge[J]. Scientific Reports, 6: 26260, doi: 10.1038/srep26260.
Chu D Z, Gordon R G, 1999. Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge[J]. Nature, 398(6722): 64-67.
Coffin M F, Pringle M S, Duncan R A, et al., 2002. Kerguelen hotspot magma output since 130 Ma[J]. Journal of Petrology, 43(7): 1121-1137.
Collier J S, MinshullT A, Hammond J O S, et al., 2009. Factors influencing magmatism during continental breakup: new insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins[J]. Journal of Geophysical Research, 114(B3): B03101, doi: 10.1029/2008JB005898.
Day J M D, Walker R J, Warren J M, 2017.186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys[J]. Geochimica et Cosmochimica Acta, 200: 232-254.
DeMets C, Gordon R G, Argus D F,et al., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letter, 21(20): 2191-2194.
Dick H J B, Lin J, Schouten H, 2003. An ultraslow-spreading class of ocean ridge[J]. Nature 426(6965): 405-412.
Gautheron C, Moreira M, Gerin C,et al., 2015. Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts[J]. Chemical Geology, 417: 163-172.
Georgen J E, Kurz M D, Dick H J B, et al., 2003. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters, 206(3-4): 509-528.
Georgen J E, Lin J, Dick H J B, 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters, 187(3-4): 283-300.
Gregoire M, Mattielli N, Nicollet C, et al., 1994. Oceanic mafic granulite xenoliths from the Kerguelen archipelago[J]. Nature, 367(6461): 360-363.
Ingle S, Weis D, Frey F A, 2002. Indian continental crust recovered from Elan Bank, Kerguelen plateau (ODP Leg 183, site 1137)[J]. Journal of Petrology, 43(7): 1241-1257.
Jamieson J W, Clague D A, Hannington M D, 2014. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 395: 136-148.
Janney P E, Le Roex A P, Carlson R W, 2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E)[J]. Journal of Petrology, 46(12): 2427-2464.
Jokat W, Boebel T, König M, et al., 2003. Timing and geometry of early Gondwana breakup[J]. Journal of Geophysical Research, 108(B9): 2428, doi: 10.1029/2002JB001802.
Kempton P D, Pearce J A, Barry T L,et al., 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source[J]. Geochemistry, Geophysics, Geosystems, 3(12): 1-35, doi: 10.1029/2002GC000320.
Kröner A, 1993. The PanAfrican belt of northeastern and eastern Africa, Madagascar, southern India, Sri Lanka and East Antarctica: terrane amalgamation during formation of the Gondwana supercontinent[M]//Thorweihe U, Schandelmeier H. Geoscientific Research in Northeast Africa. Rotterdam: CRC Press. 3-9.
Le Roex A P, Chevallier L, Verwoerd W J,et al., 2012. Petrology and geochemistry of Marion and Prince Edward Islands, Southern Ocean: magma chamber processes and source region characteristics[J]. Journal of Volcanology and Geothermal Research, 223-224: 11-28.
Le Roex A P, Dick H J B, Erlank A J,et al., 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east[J]. Journal of Petrology, 24(3): 267-318.
Le Roex A P, Dick H J B, Fisher R L, 1989. Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: evidence for contrasting styles of mantle enrichment[J]. Journal of Petrology, 30(4): 947-986.
Le Roex A P, Dick H J B, Watkins R T, 1992. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53'E to 14°38'E[J]. Contributions to Mineralogy and Petrology, 110(2-3): 253-268.
Li J B, Jian H C, Chen Y J, et al., 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge[J]. Geophysical Research Letters, 42(8): 2656-2663.
Li W, Liu C Z, Tao C H, et al., 2019. Osmium isotope compositions and highly siderophile element abundances in abyssal peridotites from the Southwest Indian Ridge: Implications for evolution of the oceanic upper mantle[J]. Lithos, 346-347: 105167.
Li W, Soustelle V, Jin Z M, et al., 2017. Origins of water content variations in the suboceanic upper mantle: Insight from Southwest Indian Ridge abyssal peridotites[J]. Geochemistry, Geophysics, Geosystems, 18(3): 1298-1329.
Livermore R A, Hunter R J, 1996. Mesozoic seafloor spreading in the southern Weddell Sea[M]//Storey B C, King E C, Livermore R A. Weddell Sea Tectonics and Gondwana Break-up. Geological Society, London, Special Publications.227-241.
Macdonald K C, 2001. Mid-ocean ridge tectonics, volcanism, and geomorphology[M]//Steele J H. Encyclopedia of Ocean Sciences.2nd ed. San Diego: Academic Press.852-866.
Mahoney J, Le Roex A P, Peng Z,et al., 1992. Southwestern limits of Indian Ocean Ridge mantle and the origin of low206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central Southwest Indian Ridge (17°-50°E)[J]. Journal of Geophysical Research, 97(B13): 19771-19790.
Meyzen C M, Ludden J N, Humler E,et al., 2005. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 6(11): Q11k11, doi: 10.1029/2005GC000979.
Meyzen C M, Toplis M J, Humler E,et al., 2003. A discontinuity in mantle composition beneath the Southwest Indian Ridge[J]. Nature, 421(6924): 731-733.
Minshull T A, Lane C I, Collier J S, et al., 2008. The relationship between rifting and magmatism in the northeastern Arabian Sea[J]. Nature Geoscience, 1(7): 463-467.
Niu X W, Ruan A G, Li J B, et al., 2015. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment[J]. Geochemistry, Geophysics, Geosystems, 16(2): 468-485.
O’Neill C, Müller D, Steinberger B, 2003. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 215(1-2):151-168.
Patriat P, Segoufin J, 1988. Reconstruction of the central Indian Ocean[J]. Tectonophysics, 155(1-4): 211-234.
Pushcharovsky Y M, 2007. Tectonic types of deepwater basins in the Indian Ocean[J]. Geotectonics, 41(5): 355-367.
Pushcharovsky Y M, 2008. Tectonic types of oceanic abyssal basins and related potentially economic fields of ferromanganese nodules[J]. Geotectonics, 42(4): 245-257.
Pushcharovsky Y M, 2014. Fragments of continental structures in the Indian Ocean[J]. Geotectonics, 48(1): 1-4.
Ramana M V, Ramprasad T, Desa M, 2001. Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica[J]. Earth and Planetary Science Letters, 191(3-4): 241-255.
Rommevaux-Jestin C, Deplus C, Patriat P, 1997. Mantle Bouguer anomaly along an ultra slow-spreading ridge: Implications for accretionary processes and comparison with results from Central Mid-Atlantic Ridge[J]. Marine Geophysical Researches, 19(6): 481-503.
Royer J Y, Gordon R G, Horner-Johnson B C, 2006. Motion of Nubia relative to Antarctica since11 Ma: implications for Nubia-Somalia, PacificNorth America, and India-Eurasia motion[J]. Geology, 34(6): 501-504.
Sauter D, Cannat M, 2010. The ultraslow spreading Southwest Indian Ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: American Geophysical Union.153-173.
Sclater J G, Fisher R L, Patriat P,et al., 1981. Eocene to recent development of the south-west Indian Ridge, a consequence of the evolution of the Indian Ocean Triple Junction[J]. Geophysical Journal International, 64(3): 587-604.
Seton M, Müller R D, Zahirovic S, et al., 2012. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 113(3-4): 212-270.
Stagg H M J, Colwel J B, Direen N G, et al., 2004. Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: insights from a regional data set[J]. Marine Geophysical Researches, 25(3-4): 183-219.
Standish J J, 2006. The influence of ridge geometry at the ultraslow-spreading Southwest Indian Ridge (9°-25°E): basalt composition sensitivity to variations in source and process[D]. Massachusetts: Massachusetts Institute of Technology.
Standish J J, Dick H J B, Michael P J,et al., 2008. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9-25°E): major element chemistry and the importance of process versus source[J]. Geochemistry, Geophysics, Geosystems, 9(5): Q05004, doi: 10.1029/2008GC001959.
Storey M, Mahoney J J, Saunders A D,et al., 1995. Timing of hot spot—related volcanism and the breakup of Madagascar and India[J]. Science, 267(5199): 852-855.
Tao C H, SeyfriedJr W E, Lowell R P, et al., 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications, 11(1): 1300, doi: 10.1038/s41467-020-15062-w.
Tao C, Lin J, Guo S,et al., 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 40(1): 47-50.
Torsvik T H, Cocks L R M, 2013. Gondwana from top to base in space and time[J]. Gondwana Research, 24(3-4): 999-1030.
Weis D, Ingle S, Damasceno D, et al., 2001. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137)[J]. Geology, 29(2): 147-150.
Whittaker J M, Williams S E, Müller R D, 2013. Revised tectonic evolution of the Eastern IndianOcean[J]. Geochemistry, Geophysics, Geosystems, 14(6): 1891-1909.
Yang A Y, Zhao T P, Zhou M F, et al., 2017. Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction—A case study at 50°28'E, Southwest Indian Ridge[J]. Journal of Geophysical Research, 121(1): 191-213, doi: 10.1002/2016JB013284.
Yoshikawa S, Okino K, Asada M, 2012. Geomorphological variations at hydrothermal sites in the southern Mariana Trough:relationship between hydrothermal activity and topographic characteristics[J]. Marine Geology, 303-306: 172-182.
Yu X, Dick H J B, 2020. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 531: 116002, doi: 10.1016/j.epsl.2019.116002.
Zhao M H, Qiu X L, Li J B, et al., 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E)[J]. Geochemistry, Geophysics, Geosystems, 14(10): 4544-4563, doi: 10.1002/ggge.20264.
Zhou H Y, Dick H J B, 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 494(7436): 195-200.
李江海, 张华添, 李洪林, 2015. 印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展[J]. 海洋学报, 37(7): 1-14.
李江海, 张华添, 李洪林, 等, 2016. 热点作用背景下的洋中脊跃迁和扩展作用: 印度洋盆地张开过程探讨[J]. 高校地质学报, 22(1): 74-80.
李三忠, 索艳慧, 刘鑫, 等, 2015b. 印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示[J]. 大地构造与成矿学, 39(1): 30-43.
李三忠, 索艳慧, 余珊, 等, 2015a. 西南印度洋构造地貌与构造过程[J]. 大地构造与成矿学, 39(1): 15-29.
李献华, 2021. 超大陆裂解的主要驱动力——地幔柱或深俯冲?[J]. 地质学报, 95(1): 20-31, doi: 10.19762/j.cnki.dizhixuebao.2020267.
余星, 韩喜球, 唐立梅, 等, 2019. 东南印度洋中脊地质构造特征及研究进展[J]. 科学通报, 64(17): 1799-1816.
张涛, 林间, 高金耀, 2011. 90 Ma以来热点与西南印度洋中脊的交互作用: 海台与板内海山的形成[J]. 中国科学: 地球科学, 41(6): 760-772.
-
计量
- 文章访问数: 1511
- PDF下载数: 163
- 施引文献: 0