A study of element geochemistry of mudstones of upper Ordovician Wufeng Formation and lower Silurian Longmaxi Formation in southern Daba Mountain
-
摘要: 元素地球化学在沉积环境判别中发挥重要的作用,尤其是沉积物形成时的氧化-还原环境和底层水体状况。本文对南大巴山上奥陶统五峰组-下志留统龙马溪组泥岩开展了元素地球化学分析,结果表明:临湘组Al2O3含量高于五峰组,五峰组-龙马溪组向上逐渐增加,TiO2和Al2O3具有相似的特征,二者与TOC呈负相关;氧化-还原敏感元素U、V和Mo较为富集,表明沉积时处于缺氧环境,不同剖面不同层位存在两次强烈富集异常,指示其为硫化环境;稀土元素均表现为轻稀土富集、重稀土亏损,略微右倾的稀土元素配分模式,具有明显Eu负异常,其中五峰组-龙马溪组Ce负异常,缺氧环境,栗子坪少数Eu正异常,可能存在热液活动;氧化-还原敏感元素比值、Mo/TOC及MoEF-UEF的协变模式揭示了南大巴山奥陶纪-志留纪之交主体上处于弱滞留贫氧-中等滞留缺氧的开阔海环境,主要受控于海平面升降变化和沉积时古海底地形,局部受北侧秦岭洋盆内洋流影响。Abstract: Element geochemistry plays an important role in judging sedimentary environments such as redox environment and bottom water condition during deposition process of sediments. A detailed element geochemistry study of mudstones from the upper Ordovician Wufeng Formation to lower Silurian Longmaxi Formation in southern Dabashan mountain is carried out in this paper.The results show that Linxiang Formation has a higher Al2O3 content than Wufeng Formation,and from bottom Wufeng Formation to upper Longmaxi Formation, the contents of Al2O3increase gradually.Both contents of Al2O3 and TiO2 have a negative correlation with TOC. Redox-sensitive elements such as U, V and Mo are enriched, indicating an anoxic environment during the deposition of the sediments.Two dramatically enriched anomalies of U, V and Mo in different strata from different profiles show a sulfidic condition. The distributions of NASC-normalized REEs display slightly right-tilted patterns, which are enriched in LREEs and depleted in HREE sand have an obvious Eu negative anomaly.The Ce negative abnormalies of Wufeng Formation and Longmaxi Formation signify an anoxic environment in bottom water and the minor Eu positive abnormalies from Liziping profile probably imply hydrothermal activities during precipitating. Covariation of ratios of redox-sensitive elements such as Mo/TOC and MoEF-UEF reveal that southern Daba Mountain during Ordovician-Silurian transition is generally in an open oceanic environment with weak stagnant oxygen depletion or medium stagnant anoxia. The sedimentary environment of study area at that time is mainly controlled by fluctuations of sea level and paleo-seafloor topography,locally influenced by oceanic hydrothermal currents from Qinling Ocean in the north.
-
-
Algeo T J, Lyons T W, Blakey R C, et al., 2007. Hydrographic conditions of the Devono Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships[J]. Palaeogeography Palaeoclimatology Palaeoecology, 256(3-4):204-230.
Algeo T J and Lyons T W, 2006. Mo-total organic carbon covariation in modern an oxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 21(PA1016), 25.
Algeo T J and Maynard J B, 2004. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 206(3-4):289-318.
Algeo T J and Tribovillard N, 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 268(3-4):211-225.
Brenchley P J, Garden G A F, Marshall J D, et al., 1995. Environmental changes associated with the first strike of the Late Ordovician mass extinction[J]. Modern Geology, 20(1):69-82.
Chen X, Rong J Y, Li Y, et al., 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography Palaeoclimatology Palaeoecology, 204(4) 353-372.
Crusius J, Calvert S, Pedersen T,et al.,1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic, and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 145(1-4):65-78.
Dean W E, Gardner J V, Pipers D Z,et al.,1997. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta,61(21):4507-4518.
Delabroye A and Vecoli M, 2010. The end-Ordovician glaciation and the Hirnantian Stage:A global review and questions about Late Ordovician event stratigraphy[J]. Earth Science Reviews, 98(3-4):269-282.
Fan J X, Peng P A, Melchin M J,et al.,2009. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 276(1-4):160-169.
German C R, Holliday B P, Elderfield H, et al.,1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 55(12):3533-3558.
Hatch J R and Leventhal J S, 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the upper Pennsylvanian (Missourian) Stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U.S.A[J]. Chemical Geology, 99(1-3):65-82.
Herrmann A D, Macleod K G, Leslie S A,et al., 2010. Did a volcanic mega eruption cause global cooling during the late Ordovician?[J]. Palaios, 25(12):831-836.
Jin J S, Zhan R B, Wu R C,et al., 2018. Equatorial cold-water tongue in the Late Ordovician[J]. Geology, 46(9):759-762.
Jones B G, Fergusson C L, Zambelli P F,et al., 1993. 东澳大利亚拉克兰褶皱带奥陶系等深积岩.//姜衍文, 吴智勇, 王泽中, 主编. 深海等深流沉积研究进展[M]. 西安:西北大学出版社, 155-166.
Jones B and Manning D A C, 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 111(1-4):111-129.
Klinkhammer, G, Elderfield H, Hudson A,et al., 1983. Rare earth elements in seawater near hydrothermal vents[J]. Nature, 305(5931), 185-188.
Marshall J D, Brenchley P J, Mason P, et al., 1997. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician[J]. Palaeogeography Palaeoclimatology Palaeoecology, 132(1):195-210.
Munnecke A, Calner M, Harper D A T, et al., 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate:A synopsis[J]. Palaeogeography Palaeoclimatology Palaeoecology, 296:389-413.
Owen A W and Robertson D B R, 1995. Ecological changes during the end-Ordovidan extinction[J]. Modern Geology, 20(1):21-39.
Rimmer S M, 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian basin(USA)[J]. Chemical Geology, 206:373-391.
Rowe H D, Loueks R G, Ruppel S C, et al., 2008. Mississippian Barnett Formation, Fort Worth basin, Texas:bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 257(1-2):16-25.
Scotese C R and McKerrow WS,1991. Ordovician plate tectonic reconstructions[M]. In:Barnes CR, Williams SH (Eds.), Advances in Ordovician geology. Geological Survey of Canada,Paper, 90(9):271-282.
Sheehan P M, 1973. The relation of late Ordovician glaciation to the Ordovicia-Silurian changeover in North Ameriean brachiopod faunas[J]. Lethaia, 6:147-154.
Shen J, Algeo T J, Feng Q L, et al., 2013. Volcanically induced environmental change at the Permian-Triassic boundary (Xiakou, Hubei Province, South China):Related to West Siberian coal-field methane releases?[J]. Journal of Asian Earth Sciences, 75:95-109.
Smolarek J, Marynowski L, Trela W, et al., 2017.Redox conditions and marine microbial community changes during the end-Ordovician mass extinction event[J]. Global and Planetary Change, 149:105-122.
Tribovillard N, Algeo T J, Baudin F, et al., 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoeeanography[J]. Chemical Geology, 324:46-58.
Tribovillard N, Algeo T J, Lyons T,et al., 2006. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology, 232(1-2):12-32.
Wang K, Chatterton B D E, Wang Y, et al., 1997. An organic carbon isotope record of late Ordovician to early Silurian marine sedimentary rocks, Yangtze sea, South China:Implications for CO2 changes during the Hirnantian glaciations[J]. Palaeogeography Palaeoclimatology Palaeoecology, 132(1-4):147-158.
Wang K, Orth C J, Attrep Jr. M, et al., 1993.The great latest Ordovician extinction on the South China plate:Chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze platform[J]. Palaeogeography Palaeoclimatology Palaeoecology, 104(1-4):61-79.
Wedepohl K H, 1991. Chemical composition and fractionation of the continental crust[J]. Geologische Rundschau, 80(2):207-223.
Wilde P, Quinby-Hunt M S, Erdtmann B D, et al.,1996. The whole-rock cerium anormaly:A potential indicator of eustatic sea-level changes in shale of the anoxic facies[J]. Sedimentological Geology, 101:43-53.
Wright J, Schrader H, Holser W T, et al.,1987. Paleoredox Variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica Cosmochimica Acta, 51(3):631-644.
Yan D T, Chen D Z, Wang Q C, et al., 2012. Predominance of stratified anoxic Yangtze sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 291:69-78.
Yan D T, Chen D Z, Wang Q C, et al., 2008. Environment redox changes of the ancient sea in the Yangtze area during the Ordo-Silurian transition[J]. Acta Geological Sinica(English edition), 82(3):679-689.
Zhou L, Algeo T J, Shen J, et al., 2015. Changes in marine productivity and redox conditions during the late Ordovician Hirnantian glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 420:223-234.
常华进,储雪蕾,冯连君,等,2009.华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据[J].岩石学报,25:1001-1007.
陈旭,陈清,甄勇毅,等,2018.志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式[J].中国科学(D辑:地球科学),48:1198-1206.
陈旭,戎嘉余,樊隽轩,等,2000.奥陶-志留系界线地层生物带的全球对比[J].古生物学报,39(1):100-114.
陈旭,肖承协,陈洪冶,等,1987.华南五峰期笔石动物群的分异及缺氧环境[J].古生物学报,26(3):326-338.
樊隽轩,MelchinMJ,陈旭,等,2012.华南奥陶-志留系龙马溪组黑色笔石页岩的生物地层学[J].中国科学(D辑:地球科学),42(1):130-139.
冯洪真,ErdtmannBD,王海峰,等,2000.上扬子区早古生代全岩Ce异常与海平面长缓变化[J].中国科学(D辑),30(1):66-72.
何龙,王云鹏,陈多福,等,2019.重庆南川地区五峰组-龙马溪组黑色页岩沉积环境与有机质富集关系[J].天然气地球科学,30(2):203-218.
胡艳华,孙卫东,丁兴,等,2009.奥陶纪-志留纪边界附近火山活动记录:来自华南周缘钾质斑脱岩的信息[J].岩石学报,25(12):3298-3308.
胡艳华,周继彬,宋彪,等,2008.中国湖北宜昌王家湾剖面奥陶系顶部斑脱岩SHRIMP锆石U-Pb定年[J].中国科学(D辑:地球科学),38(1):72-77.
黄志诚,黄钟瑾,陈智娜,等,1991.下扬子区五峰组火山碎屑岩与放射虫硅质岩[J].沉积学报,9(2):1-14.
吉让寿,秦德余,高长林,等.东秦岭造山带与盆地[M].西安:西安地图出版社,1997,45-58.
吉让寿,秦德余,高长林,等,1990.古东秦岭洋关闭和华北与扬子两地块的拼合[J].石油实验地质,12(4):353-365.
李朋,何仁亮,宗维,等,2018.鄂西恩施奥陶系-志留系界线附近沉积地球化学与沉积环境[J].地质科技情报,37(2):17-23.
李艳芳,吕海刚,张瑜,等,2015b.四川盆地五峰组-龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J].地球化学,44(2):109-116.
李艳芳,邵德勇,吕海刚,等,2015a.四川盆地五峰组-龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,36(12):1470-1483.
李智武,刘树根,罗玉宏,等,2006.南大巴山前陆冲断带构造样式及变形机制分析[J].大地构造与成矿学,30(3):294-304.
刘田,冯明友,王兴志,等,2019.渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J].天然气地球科学,30(5):740-750.
毛黎光,肖安成,魏国齐,等,2011.扬子地块北缘晚古生代-早中生代裂谷系统的分布及成因分析[J].岩石学报,27(3):721-731.
聂海宽,金之钧,马鑫,等,2017.四川盆地及邻区上奥陶统五峰组-下志留统龙马溪组底部笔石带及沉积特征[J].石油学报,38(2):160-174.
邱振,江增光,董大忠,等,2017.巫溪地区五峰组-龙马溪组页岩有机质沉积模式[J].中国矿业大学学报,46(5):1134-1143.
戎嘉余和陈旭,1987.华南晚奥陶世的动物群分异及生物相、岩相分布模式[J].古生物学报,26(3):507-535.
戎嘉余,樊隽轩,李国祥等,2006.华南史前海洋生物多样性的演变型式.见:戎嘉余,方宗杰,周忠和,等,主编.生物的起源、辐射与多样性演变——华夏化石记录的启示[M].北京:科学出版社,785-816.
戎嘉余和詹仁斌,1999.华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响[J].现代地质,13(4):390-394.
戎嘉余,1984.上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J].地层学杂志,8(1):19-29.
苏文博,何龙清,王永标,等,2002.华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层[J].中国科学(D辑:地球科学),32(3):207-219.
汪啸风,曾庆銮,周天梅,等,1983.中国三峡东部地区奥陶系与志留系界线的生物地层[J].中国科学(B辑),12:1123-1132.
汪啸风和柴之芳,1989.奥陶系与志留系界线处生物绝灭事件及其与铱和碳同位素异常的关系[J].地质学报,63(3):65-74.
王传尚,陈孝红,汪啸风,等,2002.峡区晚奥陶世地球化学异常与奥陶系-志留系之交环境变迁[J].地层学杂志,26(4):272-285.
王传尚,汪啸风,陈孝红,等,2001.奥陶系/志留系界线之交生物的绝灭与复苏[J].华南地质与矿产,2:28-34.
王怿,樊隽轩,张元动,等,2011.湖北恩施太阳河奥陶纪-志留纪之交沉积间断[J].地层学杂志,35(4):361-367.
王怿,戎嘉余,詹仁斌,等,2013.鄂西南奥陶系-志留系交界地层研究兼论宜昌上升[J].地层学杂志,37:264-274.
吴朝东,杨承运,陈其英,等,1999.湘西黑色岩系地球化学特征和成因意义[J].岩石矿物学杂志,18(1):26-39.
肖安成,魏国齐,沈中延,等,2011.扬子地块与南秦岭造山带的盆山系统与构造耦合[J].岩石学报,27(3):601-611.
熊国庆,王剑,胡仁发,等,2008.贵州梵净山地区震旦系微量元素特征及沉积环境[J].地球学报,29(1):51-60.
熊国庆,王剑,李园园,等,2017a.大巴山地区早古生代黑色岩系岩相古地理及页岩气地质意义[J].古地理学报,19(6):965-986.
熊国庆,王剑,李园园,等,2019a.大巴山地区晚奥陶世-早志留世"宜昌上升"的沉积响应[J].地质论评,65(3):533-550.
熊国庆,王剑,李园园,等,2017b.大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义[J].沉积与特提斯地质,37(2):46-58.
熊国庆,王剑,李园园,等,2019b.南大巴山东段上奥陶统五峰组-下志留统龙马溪组钾质斑脱岩锆石U-Pb年龄及其构造意义[J].地质学报,93(4):843-864.
熊国庆,2020.大巴山地区奥陶-志留纪之交构造转换过程的沉积响应研究[D].成都:成都理工大学:148-183.
熊小辉,王剑,余谦,等,2015.富有机质黑色页岩形成环境及背景的元素地球化学反演-以渝东北地区田坝剖面五峰组-龙马溪组页岩为例[J].天然气工业,35(4):25-32.
严德天,陈代钊,王清晨,等,2009.扬子地区奥陶系-志留系界线附近地球化学研究[J].中国科学(D辑:地球科学),39(3):285-299.
尹伯传,1988.扬子区晚奥陶世到早志留世海洋生物群的阶段性更替及观音桥组的时代[J].江汉石油学院学报,10(1):32-37.
昝博文,刘树根,冉波,等,2017.扬子板块北缘下志留统龙马溪组重晶石结核特征及其成因机制分析[J].岩石矿物学杂志,36(2):213-226.
张国伟,张本仁,袁学诚,等,2001.秦岭造山带与大陆动力学[M].北京:科学出版社,1-855.
张国伟,张宗清,董云鹏,等,1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,11(2):101-114.
张琳娜,樊隽轩,陈清,等,2016.华南上奥陶统观音桥层的空间分布和古地理重建[J].科学通报,61(18):2053-2063.
张琴,梁峰,王红岩,等,2018.页岩元素地球化学特征及古环境意义:以渝东南地区五峰组-龙马溪组为例[J].中国矿业大学学报,47(2):380-390.
周业鑫,丁俊,余谦,等,2017.渝东北地区观音桥段沉积与有机碳同位素特征及其区域对比[J].地质学报,91(5):1097-1107.
-
计量
- 文章访问数: 707
- PDF下载数: 136
- 施引文献: 0