Neoproterozoic-Jurassic Tectonic-Magmatic Events of the Metamorphic Basement in the Nyainrong Microcontinent of Tibet: Implications from Zircon LA-ICP-MS Geochronology
-
摘要:
本文选择聂荣微陆块变质基底中正片麻岩进行了详细的年代学研究,通过LA-ICP-MS 锆石U-Pb测年获得的年龄结果分别为502.8±1.2 Ma、532.7±3.4 Ma、833.2±2.8 Ma、734.8±3.3 Ma、495.3±1.7 Ma、496.6±2.0 Ma、495.1±1.2 Ma、803.8±2.8 Ma、811.7±2.8 Ma。综合上述片麻岩锆石U-Pb测年数据结果发现,聂荣微陆块变质基底中正片麻岩的锆石U-Pb年龄大致可以分为三组:830~730 Ma、580~470 Ma、185~160 Ma,说明聂荣微陆块变质基底从新元古代—侏罗纪经历了三期构造–岩浆事件,这三期构造事件分别发生于新元古代早期、新元古代晚期—早古生代、早—中侏罗世。综合前人研究结果,认为聂荣微陆块存在新元古代的基底,并经历了罗迪尼亚超大陆的裂解,于新元古代晚期—早古生代时期发生了泛非—早古生代构造事件,到了侏罗纪,受班公湖–怒江洋壳俯冲和大洋关闭的影响,变质基底发生了早—中侏罗世的岩浆作用和变质作用。
Abstract:In order to further research the Nyainrong microcontinent and the regional geological conditions of the Tibet Plateau, this paper systematically studied the geochronology of orthogneisses from the Nyainrong microcontinent in Tibet. We obtained the zircon U-Pb ages of nine samples by LA-ICP-MS, which were 502.8±1.2 Ma, 532.7±3.4 Ma, 833.2±2.8 Ma, 734.8±3.3 Ma, 495.3±1.7 Ma, 496.6±2.0 Ma, 495.1±1.2 Ma, 803.8±2.8 Ma, 811.7±2.8 Ma. To analyze these age results, we could divide these ages into three groups: 830-730 Ma, 580-470 Ma, 185-160 Ma. It concludes that the metamorphic basement of Nyainrong microcontinent underwent three tectonic-magmatic events which occurred in the early Neoproterozoic, the late Neoproterozoic to the early Paleozoic, and the early-middle Jurassic. Combined with previous studies, it suggests that the Nyainrong microcontinent has Neoproterozoic basement and occurred the breakup of the Rodinia Supercontinent. The metamorphic basement underwent Pan-African and early Paleozoic tectonic events. Then it underwent early-middle Jurassic magmatic-metamorphic events which were related to the Bangong-Nujiang suture zone subduction and closure.
-
Key words:
- Nyainrong microcontinent /
- orthogneisses /
- zircon U-Pb age /
- Neoproterozoic-Jurassic /
- Tibet Plateau
-
-
图 1 青藏高原地质简图(a)(据吴珍汉等,2009修改)和聂荣微陆块地质简图(b)(据1∶25万安多幅地质图和1∶25万那曲幅地质图修编)
Figure 1.
图 6 古特提斯大洋边缘印度—澳大利亚古地理位置重建图(根据Cawood et al., 2007; Zhu et al., 2012修改)
Figure 6.
表 1 年龄样品属性一览表
Table 1. The list of age samples from the basement of Nyainrong block
样品号 经纬度坐标 岩石名称 B19 91°33′44.3″E,32°05′01.7″N 花岗质片麻岩 B31 91°42′26.3″E,32°07′18.7″N 花岗质片麻岩 B42 91°43′12.1″E,32°08′41.0″N 黑云斜长片麻岩 B61-1 91°50′17.2″E,31°49′56.5″N 花岗质片麻岩 B62 91°51′08.9″E,31°49′28.6″N 花岗质片麻岩 B72 91°41′59.0″E,31°53′04.5″N 黑云斜长片麻岩 B80-1 92°03′58.5″E,31°47′41.0″N 花岗质片麻岩 B162 91°41′48.8″E,32°06′05.0″N 花岗质片麻岩 B163 91°42′40.4″E,32°07′25.3″N 英云闪长质片麻岩 -
[1] Acharyyn S K, 2000. Break up of Australia-India-Madagascar block, opening of the Indian Ocean and continental accretion in Southeast Asia with special reference to the characteristics of the peri-Indian collision zones[J]. Gondwana Research, 3(4): 425-443. doi: 10.1016/S1342-937X(05)70753-X
[2] 白志达, 徐德斌, 张绪教, 等, 2005. 西藏安多县幅1∶25 万区域地质调查报告(R).
Bai Z D, Xu D B, Zhang X J, et al., 2005. Report of regional geological survey of Amdo County, Xizang 1∶250 000(R).
[3] 鲍佩生, 肖序常, 苏犁, 等, 2007. 西藏洞错蛇绿岩的构造环境: 岩石学、地球化学和年代学制约[J]. 中国科学D辑: 地球科学, 37(3): 298-307
Bao P S, Xiao X C, Su L, et al. , 2007. Tectonic environment of the ophiolite in Dongco, Xizang Province: Constraints of petrology, geochemistry and chronology [J]. Science in China Series D: Earth Sciences, 37(3): 298-307.
[4] Boger S D, Miller J M, 2004. Terminal suturing of Gongdwana and the onset of the Ross-Delamerian orogeny: the cause and effect of an early Cambrian reconfiguration of plate motions[J]. Earth and Planetary Science Letters, 219: 35-48. doi: 10.1016/S0012-821X(03)00692-7
[5] Cawood P A, Buchan C, 2007. Linking accretionary oroggenesis with supercontinent assembly[J].Earth Science Reviews, 82(3-4): 217 − 256.
[6] Cawood P A, Johnson M R W, Nemchin A A, 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 255: 70-84. doi: 10.1016/j.jpgl.2006.12.006
[7] 陈国荣, 刘鸿飞, 蒋光武, 等, 2004. 西藏班公湖-怒江结合带中段沙木罗组的发现[J]. 地质通报, 23(2): 193-194
Chen F R, Liu H F, Jiang G W, et al. , 2004. Discovery of the Shamuluo Formation in the central segment of the Bangong Co-Nujiang River suture zone, Tibet[J]. Geological Bulletin of China, 23(2): 193-194.
[8] 陈玉禄, 张宽忠, 杨志民, 等, 2006. 青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J]. 地质通报, (6): 694-699
Chen Y L, Zhang K Z, Yang Z M, et al. , 2006. Discovery of a complete ophiolite section in the Jueweng area, Nagqu County, in the central segment of the Bangong Co-Nujiang junction zone, Qinghai-Tibet Plateau[J]. Geological Bulletin of China, (6): 694-699.
[9] DeCellers P G, Gehrels G. E, Quad J, et al. , 2000. Tectonic implications of U-Pb zircon ages of the Hialayan orogenic belt in Nepal[J]. Science, 288: 47-499.
[10] 董美玲, 董国臣, 莫宣学, 等, 2012. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 28(5): 1453 − 1464.
Dong M L, Dong G C, Mo X X, et al., 2012. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 28(5): 1453 − 1464.
[11] Gehrels G E, DeCellers P G, Martin A, et al. , 2003. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 13: 4-9.
[12] Gessner K, Collins A S, Ring U, et al., 2004. Structural and thermal history of poly-orogenic basement: U–Pb geochronology of granitoid rocks in the southern Menderes Massif, Western Turkey [J].Journal of the Geological Society, 161 (1): 93 − 101.
[13] 辜平阳, 李荣社, 何世平, 等, 2012. 西藏那曲县北聂荣微陆块聂荣岩群中斜长角闪岩——Rodinia超大陆裂解的地质记录[J]. 岩石矿物学杂志, 31(2): 145-154
Gu P Y, Li R S, He S P, et al. , 2012. The amphibolite from Nyainrong Rock Group in northern Nagqu: geological records of break-up of the supercontinent Rodinia[J]. Acta Petrologica et Mineralogica, 31(2): 145-154.
[14] Guynn J H, Kapp P, Pullen A, et al. , 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6): 505-508. doi: 10.1130/G22453.1
[15] Guynn J, Kapp P, Gehrels G E, et al. , 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 43: 23-50. doi: 10.1016/j.jseaes.2011.09.003
[16] Hassanzadeh J, Stockli D F, Horton B K, et al. , 2008. U–Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement[J]. Tectonophysics, 451: 71-96. doi: 10.1016/j.tecto.2007.11.062
[17] 胡道功, 吴珍汉, 叶培盛, 等, 2003. 西藏念青唐古拉山闪长质片麻岩锆石U-Pb 年龄[J]. 地质通报, 22(11-12) : 936 − 940.
Hu D G, Wu Z H, Ye P S, et al., 2003. SHRIMP U-Pb age of zircon from dioritic gneiss in the Nyainqêntanglha Mountains , Tibet[J]. Geological Bulletin of China, 22(11-12): 936 − 940.
[18] 胡培远, 李才, 苏黎, 等, 2010. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年-泛非与印印支事件的年代学记录[J]. 中国地质, 37(4): 1050-1059
Hu P S, Li C, Su L, et al. , 2010. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: age records of Pan-African movement and Indo-China movement[J]. Geology in China, 37(4): 1050-1059.
[19] 黄继钧, 2001. 藏北羌塘盆地构造特征及演化[J]. 中国区域地质, 20(2): 178-180
Huang J J, 2001. Tectonic characteristics and evolution of the Qiangtang basin[J]. Regional Geology of China, 20(2): 178-180.
[20] Kapp J L D, Harrison T M, Kapp P, et al. , 2005. Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet [J]. Journal of Geophysical Research, 110: 1-23.
[21] Kapp P, Yin A, Manning C E, et al. , 2000. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 8: 19-22.
[22] 李才, 谢尧武, 沙绍礼, 等, 2008. 藏东八宿地区泛非期花岗岩锆石SHRIMPU-Pb定年[J]. 地质通报, 2008, 27(1): 64-68
Li C, Xie Y W, Sha S L, et al. , 2008. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China[J]. Geological Bulletin of China, 27(1): 64-68.
[23] 李再会, 林仕良, 丛峰, 等, 2012. 滇西高黎贡山群变质岩的锆石年龄及其构造意义[J]. 岩石学报, 28(5): 1529 − 1541.
Li Z H, Lin S L, Cong F, et al., 2012. U-Pb ages of zircon from metamorphic rocks of the Gaoligongshan Group in western Yunnan and its tectonic significance[J]. Acta Petrologica Sinica, 28(5): 1529 − 1541.
[24] 刘琦胜, 叶培盛, 吴中海, 2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 31(Z1): 250 − 257
Liu Q S, Ye P S, Wu Z H. 2012. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 31(Z1): 250 − 257.
[25] Lu L, Wu Z H, Zhao Z, et al., 2014. Zircon SHRIMP U-Pb Dating, Geochemical Characteristics and Tectonic Significance of Granitic Gneisses in Amdo, Tibet[J]. Journal of Earth Science, 25(3): 473 − 485.
[26] 陆松年, 李怀坤, 陈志宏, 等, 2004. 新元古时期中国古大陆与罗迪尼亚超大陆的关系[J]. 地学前缘, 11(2): 515-523
Lu S N, Li H K, Chen Z H, et al. , 2004. Relationship between Neoproterozoic cratons of China and The Rodinia[J]. Earth Science Frontiers, 11(2): 515-523.
[27] Ludwig K R, 2001. Squid 1.02: A User‘s Manual.Berkeley Geochronology Centre[J].Special Publication, 2: 19.
[28] Merrt J, 2003. A synopsis of events related to the assembly of eastern Gondwana[J].Tectonophysics, 362 (1): 1 − 40.
[29] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 11(3): 281-290
Mo X X, Dong G C, Zhao Z D, et al. , 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution[J]. Geological Journal of China Universities, 11(3): 281-290.
[30] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22 (3): 521-533
Pan G T, Mo X X, Hou Z Q, et al. , 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and Its evolution[J]. Acta Petrologica Sinica, 22 (3): 521-533.
[31] 潘桂棠, 王立全, 朱弟成, 2004. 青藏高原区域地质调查中几个重大科学问题的思考[J]. 地质通报, 23(1): 12 − 19
Pan G T, Wang L Q, Zhu D C. 2004. Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 23(1): 12 − 19.
[32] 樊帅权, 史仁灯, 丁林, 等, 2010. 西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及其构造意义[J]. 岩石矿物学杂志, 29(5): 467-478
Pan S Q, Shi R D, Ding L, et al. , 2010. Geochemical characteristics and zircon U-Pb age of the plagiogranite in Gaize ophiolite of central Tibet and their tectonic significance[J]. Acta Petrologica et Mineralogica, 29(5): 467-478.
[33] Pullen A, Kapp P, Gehrels G E, et al. , 2011. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 123: 585-600. doi: 10.1130/B30154.1
[34] 邱瑞照, 周肃, 邓晋福, 等, 2004. 西藏班公湖一怒江带西段舍马拉沟蛇绿岩中辉长岩年龄测定兼论班公湖怒江蛇绿岩带形成时代[J]. 中国地质, 31(3): 62-268
Qiu R Z, Zhou S, Deng J F, et al. , 2004. Dating of gabbro in the Shemalagou ophiplite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the Bangong Co-Nujiang ophiolite belt [J]. Geology in China, 31(3): 62-268.
[35] Shi R D, Griffin W L, O’Reilly S Y, et al. , 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet[J]. Gondwana Research, 21: 194-206. doi: 10.1016/j.gr.2011.05.011
[36] Shi R D, Yang J S, Xu Z Q. , 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone[J]. Journal of Asian Earth Sciences, 32: 438-457. doi: 10.1016/j.jseaes.2007.11.011
[37] 宋述光, 季建清, 魏春景, 等, 2007. 滇西北怒江早古生代片麻状花岗岩的确定及其构造意义[J]. 科学通报, 52(8): 927 − 930
Song S G, Ji J Q, Wei C J, et al., 2007. Identification and tectonic significance of the early Paleozoic gneiss granites in Nujiang, northwest Yunnan [J]. 52(8): 927 − 930.
[38] 田海艳, 李超, 肖传桃, 等, 2011. 班公怒江缝合带中段闭合时间探讨[J]. 长江大学学报(自然科学版), 8(7): 18-20
Tian H Y, Li C, Xiao C T, et al. , 2011. Discussion on the closing time of the middle segment of Bangong Nujiang suture belt[J]. Journal of Yangtze University(Nature Science Edit), 8(7): 18-20.
[39] 王明, 李才, 谢明超, 等, 2012. 聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年-新元古代基底岩石的发现及其意义[J]. 岩石学报, 28(12): 4101-4108
Wang M, Li C, Xie M C, et al. , 2012. LA-ICP-MS U-Pb dating of zircon from granitic gneiss of the Nierong microcontinent: The discovery of the Neoproterozoic basement rock and its significance[J]. Acta Petrologica Sinica, 28(12): 4101-4108.
[40] Wang W L, Aitchison J C, Lo C H, et al. , 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet[J]. Journal of Asian Earth Sciences, 33: 12-138.
[41] 王晓先, 张进江, 杨雄英, 等, 2011. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄及Hf同位素特征及其地质意义[J]. 地学前缘, 18(2): 127-139
Wang X X, Zhang J J, Yang X Y, et al. , 2011. Zircon SHRIMP U-Pb ages Hf isotopic features and their geological significance of the Greater Himalayan Crystalline Complex augen gneiss in Gyirong Area south Tibet[J]. Earth Science Frontiers, 18(2): 127-139.
[42] 吴珍汉, 吴中海, 胡道功, 等, 2009. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社, 1 − 297
Wu Z H, Wu Z H, Hu D G, et al., 2009. Cenozoic tectonic evolution and uplift of Qinghai-Tibet Plateau [M]. Beijing: Geological Publishing House, 1 − 297(in Chinese).
[43] 吴珍汉, 叶培盛, 胡道功, 等, 2003. 拉萨地块北部逆冲推覆构造系统[J]. 地质论评, 49(1): 74-80
Wu Z H, Ye P S, Hu D G, et al. , 2003. Thrust System of the North Lhasa Block[J]. Geological Review, 49(1): 74-80.
[44] 夏斌, 徐力峰, 韦振权, 等, 2008. 西藏东桥蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义[J]. 地质学报, 82(4): 528-531
Xia B, Xu L F, Wei Z Q, et al. , 2008. SHRIMP Zircon Dating of Gabbro from the Donqiao Ophiolite in Tibet and Its Geological Implications[J]. Acta Geological Sinica, 82(4): 528-531.
[45] Xie C M, Li C, Wu Y W, et al., 2014. 40Ar/39Ar Thermochronology Constraints on Jurassic Tectonothermal Event of Nyainrong Microcontinent[J]. Journal of Earth Science, 25(1): 98 − 108.
[46] 解超明, 2013. 青藏高原聂荣微陆块构造演化——年代学与地球化学制约[D]. 吉林大学博士学位论文, 23 − 34
Xie M C, 2013. Tectonic evolution of the Nyainrong microcontinent, Tibet-constraints from geochronology and geochemistry[D]. Doctoral dissertation of Jilin University, 23 − 34.
[47] 解超明, 李才, 苏犁, 等, 2014. 藏北聂荣微陆块泛非-早古生代构造热事件: 年代学与地球化学制约[J]. 中国科学: 地球科学, 44(03): 414-428
Xie M C, Li C, Su L, ea al. , 2014. Pan-African the Eearly Paleozoic tectonic thermal events in the Nierong microcontinent, the northern Tibet: Geochronological and geochemical Constraints [J]. Science in China: Earth Sciences, 44(03): 414-428.
[48] 解超明, 李才, 苏黎, 等, 2010. 藏北安多地区花岗片麻岩锆石LA-ICP-MSU-Pb定年[J]. 地质通报, 29(12): 1737-1744
Xie M C, Li C, Su L, et al. , 2010. LA-ICP-MSU-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China[J]. Geological Bulletin of China, 29(12): 1737-1744.
[49] Xu R H, Scharea U, Alldgre C J, 1985. Magmatism and metamorphism in the Lhasa block(Tibet): a geochronological study[J]. Journal of Geology, 93: 41-57. doi: 10.1086/628918
[50] 许志琴, 杨经绥, 梁凤华, 等, 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录[J]. 岩石学报, 21(1): 1-12
Xu Z Q, Yang J S, Liang F H, et al. , 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference SHIMP U-Pb zircon ages[J]. Acta Petrologica Sinica, 21(1): 1-12.
[51] 叶培盛, 吴珍汉, 胡道功, 等, 2004. 西藏东桥蛇绿岩的地球化学特征及其形成的构造环境[J]. 现代地质, 18(3): 300-315
Ye P S, Wu Z H, Hu D G, et al. , 2004. Geochemical characteristics and tectonic setting of ophiolite of Dongqiao, Tibet[J]. Geoscience, 18(3): 300-315.
[52] Yin A, Harrison T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Ann. Rev. Earth Planet. Sci. LETT, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
[53] 张晓冉, 史仁灯, 黄启帅, 等, 2010. 青藏高原安多高压基性麻粒岩的发现及其地质意义[J]. 科学通报, 55(27-28): 2702-2711 doi: 10.1360/csb2010-55-27-28-2702
Zhang X R, Shi R D, Huang Q S, et al. , 2010. Finding of high-pressure mafic granulites in the Amdo basement, central Tibet[J]. Chinese Science Bulletin, 55(27-28): 2702-2711. doi: 10.1360/csb2010-55-27-28-2702
[54] 张修政, 董永胜, 谢超明, 等, 2010. 安多地区高压麻粒岩的发现及其意义[J]. 岩石学报, 26(7): 2106-2112
Zhang X Z, Dong Y S, Xie M C, et al. , 2010. Identification and significance of high-pressure granulite in Anduo area, Tibet Plateaul [J]. Acta Petrologica Sinica, 26(7): 2106-2112.
[55] 张玉修, 2007. 班公湖–怒江缝合带中段西段构造演化[D]. 中国科学院研究生院, 23.
Zhang Y X, 2007. Tectonic evolution of the middle section of Bangong Lake - Nujiang suture belt[D]. Graduate School of Chinese Academy of Sciences, 23.
[56] 张泽明, 王金丽, 沈昆, 等, 2008. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 24(7): 1627-1637
Zhang Z M, Wang J L, Shen K, et al. , 2008. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 24(7): 1627-1637.
[57] Zhu D C, Zhao Z D, Niu Y L, et al. , 2012. Cambrian bimodal volcanism in the Lhasa terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 328: 290-308. doi: 10.1016/j.chemgeo.2011.12.024
[58] 朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 18(1): 1-15 doi: 10.3969/j.issn.1006-7493.2012.01.001
Zhu D C, Zhao Z D, Niu Y L, et al. , 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane[J]. Geological Journal of China Universities, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
-