-
摘要:
本文基于实测锆石(U-Th)/He和磷灰石裂变径迹年龄的联合热史模拟明确了米仓山隆起自新元古代以来的构造-热演化史。米仓山隆起前寒武系样品锆石(U-Th)/He年龄和磷灰石裂变径迹年龄分别为190~138 Ma和106.1~120.6 Ma,均小于地层年龄或成岩结晶年龄,有效地记录了早期热信息。热史模拟结果表明米仓山隆起自新元古代以来主要经历了早侏罗世—早白垩世和晚中新世至今两期快速冷却事件,分别与扬子-华北板块碰撞和印度-欧亚板块碰撞的东扩作用有关,而白垩纪—早中新世的缓慢冷却过程则与当时的古夷平面发育有关。本文不仅丰富完善了川北地区构造-热演化成果,而且对于该地区下一步油气勘探具有重要的指导意义。
Abstract:The tectono-thermal history of the Micangshan Uplift since the Neoproterozoic was determined in this study based on the combined thermal simulation of the measured zircon (U-Th)/He and apatite fission track ages. The zircon (U-Th)/He ages and apatite fission track ages of the Precambrian samples in the Micangshan Uplift are 138-190 Ma and 106.1-120.6 Ma, respectively. These ages are lower than the corresponding stratigraphic ages or the diagenetic crystallization age, indicating that they effectively record the thermal information in the past. Thermal history modeling results show that the Micangshan Uplift since the Neoproterozoic experienced two rapid cooling events that occurred in Early Jurassic-Early Cretaceous and since late Miocene. They are respectively related to the collisions of the Yangtze-North China plates and India-Eurasia plates, whereas the slow cooling events during the Cretaceous-early Miocene were related to the ancient planation surface. According to the reconstructed burial and thermal history, the source rocks of the Lower Cambrian Qiongzhusi Formation in the Micangshan Uplift entered a high-overmature stage in the Late Triassic due to the high temperature (180-200℃) burial process. This study provides new insights for the tectono-thermal evolution and hydrocarbon accumulation, which are important for guiding further oil and gas exploration in the northern Sichuan Basin.
-
-
图 1 四川盆地北部米仓山隆起地质图及采样位置(据王国芝等,2014修改)
Figure 1.
图 2 米仓山隆起地区地层柱状图(Ge et al., 2018)
Figure 2.
表 1 米仓山隆起样品基本地质信息
Table 1. Geological information of the samples from the Micangshan Upilft
序号 样品号 经纬度 海拔/m 岩性 出处 1 WG-01 E106°28′37.75″; N32°31′55.32″ 763 新元古界闪长岩 本文 2 WG-05 E106°28′32.75″; N32°32′28.40″ 1049 震旦系含砾砂岩 本文 3 WG-10 E106°29′2.36″; N32°35′9.84″ 912 震旦系含砾砂岩 本文 4 GWS-01 E106°48′3.03″; N32°40′9.67″ 994 新元古界花岗岩 本文 5 MC-17a E106°28′44″; N32°28′19″ 625 新元古界闪长岩 孙东等,2011 6 MC-12 E106°38′37″; N32°26′50″ 978 新元古界闪长岩 Yang et al., 2013 7 WCS-17 E106°38′38″; N32°26′02″ 1139 寒武系砾岩 Lei et al., 2012 8 NJ3T E106°49′30.3″; N32°37′11.0″ 1650 闪长岩 田云涛等,2010 9 NJ6T E106°50′26.2″; N32°35′27.5″ 1286 震旦系砂岩 田云涛等,2010 10 NJ8T E106°50′41.3″; N32°34′26.8″ 1259 震旦系砂岩 田云涛等,2010 表 2 米仓山隆起锆石(U-Th)/He年龄测试结果
Table 2. Measured (U-Th)/He data for zircons from the Micangshan Uplift
序号 样品号 颗粒号 4He/ncc 颗粒质量/mg U/μg·g−1 Th/μg·g−1 Rs/μm [eU]/μg·g−1 FT 校正年龄 /(±1σ, Ma) 平均年龄/Ma 1 WG-10 Z01 52.563 0.0122 147.0 221.8 71.9 199.1 0.81 175.5±10.9 182.4±9.76 Z02 31.052 0.0070 162.4 110.2 63.4 188.3 0.79 189.3±11.7 2 GWS-01 Z01 26.025 0.0094 139.4 84.0 64.8 159.1 0.80 140.6±8.7 144.6±9.18 Z02 22.503 0.0060 186.9 136.9 62.0 219.1 0.79 138.1±8.6 Z03 37.795 0.0054 320.7 188.0 55.0 364.9 0.76 155.1±9.6 3 WG-05 Z01 18.577 0.0044 151.6 124.6 54.5 180.9 0.76 189.9±11.8 185.0±6.1 Z02 12.797 0.0038 127.5 109.2 56.6 153.1 0.76 178.2±11.0 Z03 21.250 0.0053 154.4 80.2 54.0 173.3 0.76 186.9±11.6 注:ncc表示1×10−9 cm3; [eU]表示有效U浓度,[eU]=[U]+0.235×[Th]; Rs表示等效半径,Rs=3×RL/2×(R+L),R=W/2。 表 3 米仓山隆起磷灰石裂变径迹测试结果
Table 3. Measured apatite fission track data from the Micangshan Uplift
序号 样品号 颗粒数
(n)ρs (105/cm2)
(Ns)ρi (105/cm2)
(Ni)ρd (105/cm2)
(Nd)P(χ2)
(%)中值年龄
(±1σ, Ma)平均径迹长度
(±1σ, μm) (N)Dpar
(±1σ,μm)1 WG-01 15 9.63(312) 19.136(620) 15.4( 20410 )95.2 106.1±7.8 11.58±1.35(34) 2.75±0.37 2 WG-05 19 9.88(493) 18.978(947) 15.7( 19409 )99.0 111.8±6.7 11.82±1.46(64) 2.40±0.43 3 WG-10 20 8.978(457) 15.265(777) 15.0( 19575 )99.5 120.6±7.7 12.75±1.22(58) 2.20±0.26 4 NJ8T 19 25.6(831) 79.38( 2578 )15.04( 2805 )79.1 93.9±4.1 1.72 5 NJ6T 20 13.4(703) 35.7(1871) 15.16( 2805 )96.6 110.1±5.3 12.95±0.12(115) 1.85 6 NJ3T 25 6.39(639) 18.34(1834) 15.40( 2805 )76.04 103.8±5.1 13.14±0.12(143) 1.73 7 MC12 25 68.9±3.5 8 WCS-17 14 17.214(556) 44.675( 1443 )12.273( 6288 )0 80.4±10.6 12.1±0.2(44) 1.6 9 MC-17a 81.0 注:ρs、ρi、ρd分别表示磷灰石自发径迹密度、磷灰石诱发径迹密度、标准玻璃诱发径迹密度;NS、Ni、Nd分别表示磷灰石自发径迹数、磷灰石诱发径迹数、标准玻璃诱发径迹数;P(χ2)表示卡方检验,当该值大于5%时,表示样品沉积后经历过高温重置,测试的中值年龄记录的是沉积区热信息,当该值小于5%时,表示样品沉积后未经历过高温重置,测试的池年龄仍记录的是物源区热信息;Dpar表示自发径迹蚀刻象的长轴长度。 -
[1] Arne D, Worley B, Wilson C, et al. , 1997. Differential Exhumation in Response to Episodic Thrusting along the Eastern Margin of the Tibet Plateau[J]. Tectonophysics, 280: 239-256. doi: 10.1016/S0040-1951(97)00040-1
[2] Chang J, Li D, Min K, et al. , 2019. Cenozoic Deformation of the Kalpin Fold-and-thrust belt, Southern Chinese Tian Shan: New Insights from Low-T thermochronology andSandbox Modeling[J]. Tectonophysics, 766: 416-432. doi: 10.1016/j.tecto.2019.06.018
[3] 常远, 许长海, Peter W. Reiners,等. 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录[J]. 地球物理学报, 53(4):912-919.
Chang Y, Xu C H, Reiners P W, et al. 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: evidence from apatite (U-Th)/He dating [J]. Chinese Journal of Geophysics, 53(4):912-919
[4] 陈龙博, 何登发, 王贝, 等, 2017. 川东北地区通南巴背斜中三叠世以来构造变形时间厘定及其地质意义[J]. 大地构造与成矿学, 41(3): 433-445.
Chen L B, He D F, Wang B, et al. , 2017. Dating the tectonic deformation since the Middle Triassic for the Tongnanba Anticline in the Northeastern Sichuan Basin and its geological implications [J]. Geotectonica et Metallogenia, 41 (3): 433- 445.
[5] 陈洪德, 郭彤楼, 等, 2012. 中上扬子叠合盆地沉积充填过程与物质分布规律[M]. 北京: 科学出版社.
Chen H D, Guo T L, et al., 2012. Sedimentary filling process and material distribution in the Middle and Upper Yangtze superimposed basins [M]. Beijing: Science Press.
[6] Clift P, Hoang V, Hinton R, et al. , 2008. Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments[J]. Geochemistry, Geophysics, Geosystems, 9(4): 1-29.
[7] 邓宾, Sueoka S, 刘树根, 等, 2014. 米仓山楔入冲断构造模型低温热年代学证据及其意义[J]. 地球物理学报, 57(4): 1155-1168 doi: 10.6038/cjg20140413
DENG B, SUEOKA S, LIU S G, LI Z W, LI J X, 2014. Wedge-thrust folding in the Micangshan constrained by low-temperature thermochronometer model and its significance[J]. Chinese Journal of Geophysics, 57(4): 1155-1168. doi: 10.6038/cjg20140413
[8] Dong Y, Liu X, Santosh M, et al. , 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry[J]. Precambrian Research, 196-197: 247-274. doi: 10.1016/j.precamres.2011.12.007
[9] 杜金虎, 邹才能, 徐春春, 等, 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.
Du J H, Zou C N, Xu C C, et al., Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin [J]. Petroleum Exploration and Development, 2014, 41(3): 268-277 (in Chinese with English abstract).
[10] 段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程[J]. 地球科学, 44(3): 738-755
Duan J B, Mei Q H, Li B S, et al. , 2019. Sinian⁃Early Cambrian tectonic⁃sedimentary evolution in Sichuan Basin [J]. Earth Science, 44(3): 738-755.
[11] Enkelmann E, Ratschbacher L, Jonckheere R, et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin? [J] GSA Bulletin, 118(5-6): 651-671.
[12] Gan B, Lai S, Qin J, et al. , 2017. Neoproterozoic Alkaline Intrusive Complex in the Northwestern Yangtze Block, Micang Mountains Region, South China: Petrogenesis and Tectonic Significance[J]. International Geology Review, 59(3): 311-332. doi: 10.1080/00206814.2016.1258676
[13] 高平, 李双建, 何治亮, 等, 2020. 四川盆地广元-梁平古裂陷构造-沉积演化[J]. 石油与天然气地质, 41(4): 784-799 doi: 10.11743/ogg20200412
Gao P, Li S J, He Z L, et al. , 2020. Tectonic-sedimentary evolution of Guangyuan-Liangping paleo-rift in Sichuan Basin[J]. Oil & Gas Geology, 41(4): 784-799. doi: 10.11743/ogg20200412
[14] Ge X, Shen C, Selby D, et al. , 2018. Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights From Pyrobitumen Rhenium-osmium Geochronology and Apatite Fission-track Analysis[J]. AAPG Bulletin, 102(8): 1429-1453. doi: 10.1306/1107171616617170
[15] Gleadow A, Harrison M, HOHN B, et al. , 2015. The Fish Canyon Tuff: A New Look at an Old Low-temperature Thermochronology Standard[J]. Earth and Planetary Science Letters, 424: 95-108. doi: 10.1016/j.jpgl.2015.05.003
[16] Green P, Duddy I, Laslett G, et al. , 1989. Thermal Annealing of Fission Tracks in Apatite: 4. Quantitative Modelling Techniques and Extension to Geological Timescales[J]. Chemical Geology, 79: 155-182.
[17] 谷志东, 殷积峰, 姜华, 等, 2016. 四川盆地西北部晚震旦世—早古生代构造演化与天然气勘探[J]. 石油勘探与开发, 43(1): 1-11 doi: 10.1016/S1876-3804(16)30001-5
Gu Z F, Yin J F, Jiang H, et al. , 2016. . Tectonic evolution from Late Sinian to Early Paleozoic and natural gas exploration in northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 43(1): 1-11. doi: 10.1016/S1876-3804(16)30001-5
[18] Guedes S, Moreira P, Devanathan R, et al. , 2013. Improved Zircon Fission-Track Annealing Model Based on Reevaluation of Annealing Data[J]. Physics & Chemistry of Minerals, 40(2): 93-106.
[19] Guenthner W R, Reiners P W, Ketcham R A, et al. , 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology[J]. American Journal of Science, 313(3), 145-198.
[20] 何政伟, 刘援朝, 魏显贵, 等, 1997. 扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学[J]. 矿物岩石, 17(s1): 83-87 doi: 10.19719/j.cnki.1001-6872.1997.s1.010
He Z W, Liu Y C, Wei X G, et al. , 1997. Isotope chronology of basement metamorphic rocks in Micangshan area, northern margin of Yangtze craton[J]. Mineral Rocks, 17(S1): 83-87. doi: 10.19719/j.cnki.1001-6872.1997.s1.010
[21] Hetzel R, Dunkl I, Haider V, et al. , 2011. Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift[J]. Geology, 39(10): 983-986. doi: 10.1130/G32069.1
[22] Hu S, Raza A, Min K, et al. , 2006. Late Mesozoic and Cenozoic Thermotectonic Evolution along a Transect from the North China Craton through the Qinling Orogen into the Yangtze Craton, Central China[J]. Tectonics, 25(6): 1-15.
[23] Jolivet M, 2015. Mesozoic Tectonic and Topographic Evolution of Central Asia and Tibet: a Preliminary Synthesis[J]. Geological Society, London, Special Publications, 427(1): 19-55.
[24] Ketcham R A, Carter A, Donelick R A, et al., 2007. Improved Modeling of Fission-Track Annealing in Apatite[J]. American Mineralogist 92(5-6): 799-810.
[25] Lei Y, Jia C, Li B, et al., 2012. Meso-Cenozoic Tectonic Events Recorded by Apatite Fission Track in the Northern Longmen-Micang Mountains Region. Acta Geologica Sinica, 86(1): 153-165.
[26] Liu S, Deng B, Li Z, et al. , 2012. Architecture of Basin-mountain Systems and Their Influences on Gas Distribution: a Case Study from the Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 47: 204-215. doi: 10.1016/j.jseaes.2011.10.012
[27] 刘少峰, 张国伟, 程顺有, 等, 1999. 东秦岭-大别山及邻区挠曲类盆地演化与碰撞造山过程[J]. 地质科学, 34(3): 336-346
Liu S F, Zhang G W, Cheng S Y, et al., 1999. Evolution of flexural basins and process of collision orogeny in east Qinling-Dabieshan and its adjacent regions. Scientia Geologica Sinica, 34(3): 336-346 (in Chinese with English abstract).
[28] 罗冰, 周刚, 罗文军, 等, 2015. 川中古隆起下古生界—震旦系勘探发现于天然气富集规律[J]. 中国石油勘探, 20(2): 18-29
Luo B, Zhou G, Luo W J, 2022. Discovery from Exploration of Lower Paleozoic-Sinian System in Central Sichuan Palaeo-uplift and Its Natural Gas Abundance Law[J]. . China Petroleum Exploration, 20(2): 18-29.
[29] 马肖琳, 2019. 川北地区震旦系灯影组储层特征研究[D]. 北京: 中国石油大学(北京).
Ma X L, 2019. Research on Reservoir Characteristics of the Sinian Dengying Formation in Northern Sichuan Basin. Beijing: China University Of Petroleum.
[30] Meng Q, Wang E, Hu J, 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block[J]. GSA Bulletin, 117(3-4): 396-410.
[31] Morin J, Jolivet M, Barrier L, et al. , 2019. Planation Surfaces of the Tian Shan Range (Central Asia): Insight on Several 100 Million Years of Topographic Evolution[J]. Journal of Asian Earth Sciences, 177: 52-65. doi: 10.1016/j.jseaes.2019.03.011
[32] 邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学[M]. 青岛: 中国石油大学出版社.
Qiu N S, Hu S B, He L J, 2019. Geothermics in Sedimentary Basins [M]. Qingdao: China University of Petroleum Press.
[33] Rahn M, Seward D, 2000. How many track lengths do we need? Ontrack, 20: 12–15.
[34] 沈中延, 肖安成, 王亮, 等, 2010. 四川北部米仓山地区下三叠统内部不整合面的发现及其意义[J]. 岩石学报, 26(4): 1313-1321
Shen Z Y, Xiao A C, Wang L, et al. , 2010. Unconformity in the Lower Triassic of Micangshan Area, northern Sichuan Province: Its discovery and significance[J]. Acta Petrologica Sinica, 2010, 26(4): 1313-1321.
[35] 孙东, 2011. 米仓山构造带构造特征及中-新生代构造演化[D]. 成都: 成都理工大学.
Sun D, 2011. The structural character and Meso-Cenozoic evolution of Micang Mountain Structural Zone, Northern Sichuan Basin, China [D]. Chengdu: Chengdu University of Technology.
[36] Tian Y, Kohn B P, Zhu C, et al. , 2012. Post-orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China[J]. Basin Research, 24(1): 70-90. doi: 10.1111/j.1365-2117.2011.00516.x
[37] 田云涛, 朱传庆, 徐明, 等, 2010. 白垩纪以来米仓山-汉南穹隆剥蚀过程及其构造意义: 磷灰石裂变径迹的证据[J]. 地球物理学报, 53(4): 920-930 doi: 10.3969/j.issn.0001-5733.2010.04.017
Tian Y C, Shu C Q, Xu M, et al. , 2010. Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: evidences from Apatite Fission Track analysis[J]. Chinese Journal of Geophysics, 53(4): 920-930. doi: 10.3969/j.issn.0001-5733.2010.04.017
[38] 王国芝, 刘树根, 李娜, 等, 2014. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制[J]. 岩石学报, 30(3): 667-678
Wang G Z, Liu S G, Li N, Et Al. , 2014. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin[J]. Acta Petrologica Sinica, 30(3): 667-678.
[39] 魏显贵, 杜思清, 何政伟, 等, 1997. 米仓山地区构造演化[J]. 矿物岩石, 17(S1): 107-113
Wei X G, Du S Q, He Z W, et al. 1997. The tectonic evolution of Micangshan Area. Journal of Mineralogy and Petrology, 17(S1): 107-113 (in Chinese with English abstract).
[40] Wolf R, Farley K, Silver L, 1996. Helium Diffusion and Low-temperature Thermochronometry of Apatite[J]. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5
[41] Xu C H, Zhou Z Y, Chang Y, et al. , 2010. Genesis of Daba Arcuate Structural Belt Related to Adjacent Basement Upheavals: Constraints from Fission-Track and (U-Th)/He Thermochronology[J]. Sci. China Earth Sci, 53: 1634-1646. doi: 10.1007/s11430-010-4112-y
[42] 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 54(4): 1052-1060 doi: 10.3969/j.issn.0001-5733.2011.04.020
Xu M, Zhu C Q, Tian Y T, et al. , 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. doi: 10.3969/j.issn.0001-5733.2011.04.020
[43] Yang Z, Ratschbacher L, Jonckheere R, et al. , 2013. Late-stage Foreland Growth of China’s Largest Orogens (Qinling, Tibet): Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China[J]. Lithosphere, 5(4): 420-437. doi: 10.1130/L260.1
[44] Yang Z, Shen C, Ratschbacher L, et al. , 2017. Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 122(6), 4712-4740.
[45] 张茜, 董云鹏, 杨晨, 等, 2010. 米仓山隆升时代的沉积学制约[J]. 西北地质, 43(3): 12-19
Zhang Q, Dong Y P, Yang C, Et Al. , 2022. Sedimentological Restriction During the Uplift Period in Micangshan [J]. NORTHWESTERN GEOLOGY, 2010, 43(3): 12-19.
[46] 张艳妮, 李荣西, 刘海青, 等, 2014. 四川盆地北缘大巴山前陆构造中-新生代构造隆升史[J]. 地球科学与环境学报, 36(1): 231 − 238.
Zhang Y N, Li R X, Liu H Q, et al., 2014. Mesozoic-Cenozoic Tectonic Uplift History of Dabashan Foreland Structure in the Northern Rim of Sichuan Basin[J]. Journal of Earth Sciences and Environment, 36(1): 230 − 238 (in Chinese with English abstract).
[47] Zhao B, Mao K, Cai Y, et al. 2020. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017 [J]. Earth Syst. Sci. Data, 12, 2555-2577.
[48] Zhao J, Zhou M, 2009. Secular Evolution of The Neoproterozoic Lithospheric Mantle Underneath the Northern Margin of the Yangtze Block, South China [J]. Lithos, 107: 152-168. doi: 10.1016/j.lithos.2008.09.017
[49] 周学海, 2015. 米仓山前缘震旦系灯影组油气探讨[D]. 成都: 成都理工大学.
Zhou X H, 2015. Oil-gas prospects Discussion of Sinian Dengying Formation at frontal area of Micang Mountain. Chengdu: Chengdu University of technology.
[50] 朱传庆, 邱楠生, 江强, 等, 2015. 川西坳陷鸭子河地区基于多种古温标的钻井热史恢复[J]. 地球物理学报, 58(10): 3660-3670 doi: 10.6038/cjg20151019
Zhu C Q, Qiu N S, Jiang Q, et al. , 2015. Thermal history reconstruction based on multiple paleo-thermal records of the Yazihe area, western Sichuan depression[J]. Chinese Journal of Geophysics, 58(10): 3660-3670. doi: 10.6038/cjg20151019
-