川北米仓山隆起构造-热演化特征

张建勇, 常健, 李文正, 付小东, 杨磊, 和源. 2024. 川北米仓山隆起构造-热演化特征. 沉积与特提斯地质, 44(1): 58-70. doi: 10.19826/j.cnki.1009-3850.2021.12005
引用本文: 张建勇, 常健, 李文正, 付小东, 杨磊, 和源. 2024. 川北米仓山隆起构造-热演化特征. 沉积与特提斯地质, 44(1): 58-70. doi: 10.19826/j.cnki.1009-3850.2021.12005
ZHANG Jianyong, CHANG Jian, LI Wenzheng, FU Xiaodong, YANG Lei, HE Yuan. 2024. Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin. Sedimentary Geology and Tethyan Geology, 44(1): 58-70. doi: 10.19826/j.cnki.1009-3850.2021.12005
Citation: ZHANG Jianyong, CHANG Jian, LI Wenzheng, FU Xiaodong, YANG Lei, HE Yuan. 2024. Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin. Sedimentary Geology and Tethyan Geology, 44(1): 58-70. doi: 10.19826/j.cnki.1009-3850.2021.12005

川北米仓山隆起构造-热演化特征

  • 基金项目: 国家科技重大专项(2017ZX05008-005);中国石油天然气股份有限公司重大科技课题(2018A-0105)
详细信息
    作者简介: 张建勇(1978—),男,高级工程师,理学博士。E-mail:zhangjy_hz@petrochina.com.cn
    通讯作者: 常健(1982—),男,教授,博士生导师,理学博士。E-mail:changjian@cup.edu.cn
  • 中图分类号: P548

Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin

More Information
  • 本文基于实测锆石(U-Th)/He和磷灰石裂变径迹年龄的联合热史模拟明确了米仓山隆起自新元古代以来的构造-热演化史。米仓山隆起前寒武系样品锆石(U-Th)/He年龄和磷灰石裂变径迹年龄分别为190~138 Ma和106.1~120.6 Ma,均小于地层年龄或成岩结晶年龄,有效地记录了早期热信息。热史模拟结果表明米仓山隆起自新元古代以来主要经历了早侏罗世—早白垩世和晚中新世至今两期快速冷却事件,分别与扬子-华北板块碰撞和印度-欧亚板块碰撞的东扩作用有关,而白垩纪—早中新世的缓慢冷却过程则与当时的古夷平面发育有关。本文不仅丰富完善了川北地区构造-热演化成果,而且对于该地区下一步油气勘探具有重要的指导意义。

  • 加载中
  • 图 1  四川盆地北部米仓山隆起地质图及采样位置(据王国芝等,2014修改)

    Figure 1. 

    图 2  米仓山隆起地区地层柱状图(Ge et al., 2018

    Figure 2. 

    图 3  单颗粒锆石(U-Th)/He年龄与eU和颗粒半径关系图

    Figure 3. 

    图 4  磷灰石裂变径迹年龄镭射图(左)及与Dpar关系图(右)

    Figure 4. 

    图 5  米仓山隆起震旦系灯影组样品WG-05和WG-10热史模拟结果

    Figure 5. 

    图 6  米仓山隆起样品WG-01和GWS-01热史模拟结果

    Figure 6. 

    图 7  米仓山隆起及周缘地区温度-时间路径对比

    Figure 7. 

    表 1  米仓山隆起样品基本地质信息

    Table 1.  Geological information of the samples from the Micangshan Upilft

    序号样品号经纬度海拔/m岩性出处
    1WG-01E106°28′37.75″; N32°31′55.32″763新元古界闪长岩本文
    2WG-05E106°28′32.75″; N32°32′28.40″1049震旦系含砾砂岩本文
    3WG-10E106°29′2.36″; N32°35′9.84″912震旦系含砾砂岩本文
    4GWS-01E106°48′3.03″; N32°40′9.67″994新元古界花岗岩本文
    5MC-17aE106°28′44″; N32°28′19″625新元古界闪长岩孙东等,2011
    6MC-12E106°38′37″; N32°26′50″978新元古界闪长岩Yang et al., 2013
    7WCS-17E106°38′38″; N32°26′02″1139寒武系砾岩Lei et al., 2012
    8NJ3TE106°49′30.3″; N32°37′11.0″1650闪长岩田云涛等,2010
    9NJ6TE106°50′26.2″; N32°35′27.5″1286震旦系砂岩田云涛等,2010
    10NJ8TE106°50′41.3″; N32°34′26.8″1259震旦系砂岩田云涛等,2010
    下载: 导出CSV

    表 2  米仓山隆起锆石(U-Th)/He年龄测试结果

    Table 2.  Measured (U-Th)/He data for zircons from the Micangshan Uplift

    序号样品号颗粒号4He/ncc颗粒质量/mgU/μg·g−1Th/μg·g−1Rs/μm[eU]/μg·g−1FT校正年龄 /(±1σ, Ma)平均年龄/Ma
    1WG-10Z0152.5630.0122147.0221.871.9199.10.81175.5±10.9182.4±9.76
    Z0231.0520.0070162.4110.263.4188.30.79189.3±11.7
    2GWS-01Z0126.0250.0094139.484.064.8159.10.80140.6±8.7144.6±9.18
    Z0222.5030.0060186.9136.962.0219.10.79138.1±8.6
    Z0337.7950.0054320.7188.055.0364.90.76155.1±9.6
    3WG-05Z0118.5770.0044151.6124.654.5180.90.76189.9±11.8185.0±6.1
    Z0212.7970.0038127.5109.256.6153.10.76178.2±11.0
    Z0321.2500.0053154.480.254.0173.30.76186.9±11.6
    注:ncc表示1×10−9 cm3; [eU]表示有效U浓度,[eU]=[U]+0.235×[Th]; Rs表示等效半径,Rs=3×RL/2×(R+L),R=W/2。
    下载: 导出CSV

    表 3  米仓山隆起磷灰石裂变径迹测试结果

    Table 3.  Measured apatite fission track data from the Micangshan Uplift

    序号样品号颗粒数
    (n)
    ρs (105/cm2)
    (Ns)
    ρi (105/cm2)
    (Ni)
    ρd (105/cm2)
    (Nd)
    P2)
    (%)
    中值年龄
    (±1σ, Ma)
    平均径迹长度
    (±1σ, μm) (N)
    Dpar
    (±1σ,μm)
    1WG-01159.63(312)19.136(620)15.4(20410)95.2106.1±7.811.58±1.35(34)2.75±0.37
    2WG-05199.88(493)18.978(947)15.7(19409)99.0111.8±6.711.82±1.46(64)2.40±0.43
    3WG-10208.978(457)15.265(777)15.0(19575)99.5120.6±7.712.75±1.22(58)2.20±0.26
    4NJ8T1925.6(831)79.38(2578)15.04(2805)79.193.9±4.11.72
    5NJ6T2013.4(703)35.7(1871)15.16(2805)96.6110.1±5.312.95±0.12(115)1.85
    6NJ3T256.39(639)18.34(1834)15.40(2805)76.04103.8±5.113.14±0.12(143)1.73
    7MC122568.9±3.5
    8WCS-171417.214(556)44.675(1443)12.273(6288)080.4±10.612.1±0.2(44)1.6
    9MC-17a81.0
    注:ρs、ρi、ρd分别表示磷灰石自发径迹密度、磷灰石诱发径迹密度、标准玻璃诱发径迹密度;NS、Ni、Nd分别表示磷灰石自发径迹数、磷灰石诱发径迹数、标准玻璃诱发径迹数;P2)表示卡方检验,当该值大于5%时,表示样品沉积后经历过高温重置,测试的中值年龄记录的是沉积区热信息,当该值小于5%时,表示样品沉积后未经历过高温重置,测试的池年龄仍记录的是物源区热信息;Dpar表示自发径迹蚀刻象的长轴长度。
    下载: 导出CSV
  • [1]

    Arne D, Worley B, Wilson C, et al. , 1997. Differential Exhumation in Response to Episodic Thrusting along the Eastern Margin of the Tibet Plateau[J]. Tectonophysics, 280: 239-256. doi: 10.1016/S0040-1951(97)00040-1

    [2]

    Chang J, Li D, Min K, et al. , 2019. Cenozoic Deformation of the Kalpin Fold-and-thrust belt, Southern Chinese Tian Shan: New Insights from Low-T thermochronology andSandbox Modeling[J]. Tectonophysics, 766: 416-432. doi: 10.1016/j.tecto.2019.06.018

    [3]

    常远, 许长海, Peter W. Reiners,等. 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录[J]. 地球物理学报, 53(4):912-919.

    Chang Y, Xu C H, Reiners P W, et al. 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: evidence from apatite (U-Th)/He dating [J]. Chinese Journal of Geophysics, 53(4):912-919

    [4]

    陈龙博, 何登发, 王贝, 等, 2017. 川东北地区通南巴背斜中三叠世以来构造变形时间厘定及其地质意义[J]. 大地构造与成矿学, 41(3): 433-445.

    Chen L B, He D F, Wang B, et al. , 2017. Dating the tectonic deformation since the Middle Triassic for the Tongnanba Anticline in the Northeastern Sichuan Basin and its geological implications [J]. Geotectonica et Metallogenia, 41 (3): 433- 445.

    [5]

    陈洪德, 郭彤楼, 等, 2012. 中上扬子叠合盆地沉积充填过程与物质分布规律[M]. 北京: 科学出版社.

    Chen H D, Guo T L, et al., 2012. Sedimentary filling process and material distribution in the Middle and Upper Yangtze superimposed basins [M]. Beijing: Science Press.

    [6]

    Clift P, Hoang V, Hinton R, et al. , 2008. Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments[J]. Geochemistry, Geophysics, Geosystems, 9(4): 1-29.

    [7]

    邓宾, Sueoka S, 刘树根, 等, 2014. 米仓山楔入冲断构造模型低温热年代学证据及其意义[J]. 地球物理学报, 57(4): 1155-1168 doi: 10.6038/cjg20140413

    DENG B, SUEOKA S, LIU S G, LI Z W, LI J X, 2014. Wedge-thrust folding in the Micangshan constrained by low-temperature thermochronometer model and its significance[J]. Chinese Journal of Geophysics, 57(4): 1155-1168. doi: 10.6038/cjg20140413

    [8]

    Dong Y, Liu X, Santosh M, et al. , 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry[J]. Precambrian Research, 196-197: 247-274. doi: 10.1016/j.precamres.2011.12.007

    [9]

    杜金虎, 邹才能, 徐春春, 等, 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.

    Du J H, Zou C N, Xu C C, et al., Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin [J]. Petroleum Exploration and Development, 2014, 41(3): 268-277 (in Chinese with English abstract).

    [10]

    段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程[J]. 地球科学, 44(3): 738-755

    Duan J B, Mei Q H, Li B S, et al. , 2019. Sinian⁃Early Cambrian tectonic⁃sedimentary evolution in Sichuan Basin [J]. Earth Science, 44(3): 738-755.

    [11]

    Enkelmann E, Ratschbacher L, Jonckheere R, et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin? [J] GSA Bulletin, 118(5-6): 651-671.

    [12]

    Gan B, Lai S, Qin J, et al. , 2017. Neoproterozoic Alkaline Intrusive Complex in the Northwestern Yangtze Block, Micang Mountains Region, South China: Petrogenesis and Tectonic Significance[J]. International Geology Review, 59(3): 311-332. doi: 10.1080/00206814.2016.1258676

    [13]

    高平, 李双建, 何治亮, 等, 2020. 四川盆地广元-梁平古裂陷构造-沉积演化[J]. 石油与天然气地质, 41(4): 784-799 doi: 10.11743/ogg20200412

    Gao P, Li S J, He Z L, et al. , 2020. Tectonic-sedimentary evolution of Guangyuan-Liangping paleo-rift in Sichuan Basin[J]. Oil & Gas Geology, 41(4): 784-799. doi: 10.11743/ogg20200412

    [14]

    Ge X, Shen C, Selby D, et al. , 2018. Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights From Pyrobitumen Rhenium-osmium Geochronology and Apatite Fission-track Analysis[J]. AAPG Bulletin, 102(8): 1429-1453. doi: 10.1306/1107171616617170

    [15]

    Gleadow A, Harrison M, HOHN B, et al. , 2015. The Fish Canyon Tuff: A New Look at an Old Low-temperature Thermochronology Standard[J]. Earth and Planetary Science Letters, 424: 95-108. doi: 10.1016/j.jpgl.2015.05.003

    [16]

    Green P, Duddy I, Laslett G, et al. , 1989. Thermal Annealing of Fission Tracks in Apatite: 4. Quantitative Modelling Techniques and Extension to Geological Timescales[J]. Chemical Geology, 79: 155-182.

    [17]

    谷志东, 殷积峰, 姜华, 等, 2016. 四川盆地西北部晚震旦世—早古生代构造演化与天然气勘探[J]. 石油勘探与开发, 43(1): 1-11 doi: 10.1016/S1876-3804(16)30001-5

    Gu Z F, Yin J F, Jiang H, et al. , 2016. . Tectonic evolution from Late Sinian to Early Paleozoic and natural gas exploration in northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 43(1): 1-11. doi: 10.1016/S1876-3804(16)30001-5

    [18]

    Guedes S, Moreira P, Devanathan R, et al. , 2013. Improved Zircon Fission-Track Annealing Model Based on Reevaluation of Annealing Data[J]. Physics & Chemistry of Minerals, 40(2): 93-106.

    [19]

    Guenthner W R, Reiners P W, Ketcham R A, et al. , 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology[J]. American Journal of Science, 313(3), 145-198.

    [20]

    何政伟, 刘援朝, 魏显贵, 等, 1997. 扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学[J]. 矿物岩石, 17(s1): 83-87 doi: 10.19719/j.cnki.1001-6872.1997.s1.010

    He Z W, Liu Y C, Wei X G, et al. , 1997. Isotope chronology of basement metamorphic rocks in Micangshan area, northern margin of Yangtze craton[J]. Mineral Rocks, 17(S1): 83-87. doi: 10.19719/j.cnki.1001-6872.1997.s1.010

    [21]

    Hetzel R, Dunkl I, Haider V, et al. , 2011. Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift[J]. Geology, 39(10): 983-986. doi: 10.1130/G32069.1

    [22]

    Hu S, Raza A, Min K, et al. , 2006. Late Mesozoic and Cenozoic Thermotectonic Evolution along a Transect from the North China Craton through the Qinling Orogen into the Yangtze Craton, Central China[J]. Tectonics, 25(6): 1-15.

    [23]

    Jolivet M, 2015. Mesozoic Tectonic and Topographic Evolution of Central Asia and Tibet: a Preliminary Synthesis[J]. Geological Society, London, Special Publications, 427(1): 19-55.

    [24]

    Ketcham R A, Carter A, Donelick R A, et al., 2007. Improved Modeling of Fission-Track Annealing in Apatite[J]. American Mineralogist 92(5-6): 799-810.

    [25]

    Lei Y, Jia C, Li B, et al., 2012. Meso-Cenozoic Tectonic Events Recorded by Apatite Fission Track in the Northern Longmen-Micang Mountains Region. Acta Geologica Sinica, 86(1): 153-165.

    [26]

    Liu S, Deng B, Li Z, et al. , 2012. Architecture of Basin-mountain Systems and Their Influences on Gas Distribution: a Case Study from the Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 47: 204-215. doi: 10.1016/j.jseaes.2011.10.012

    [27]

    刘少峰, 张国伟, 程顺有, 等, 1999. 东秦岭-大别山及邻区挠曲类盆地演化与碰撞造山过程[J]. 地质科学, 34(3): 336-346

    Liu S F, Zhang G W, Cheng S Y, et al., 1999. Evolution of flexural basins and process of collision orogeny in east Qinling-Dabieshan and its adjacent regions. Scientia Geologica Sinica, 34(3): 336-346 (in Chinese with English abstract).

    [28]

    罗冰, 周刚, 罗文军, 等, 2015. 川中古隆起下古生界—震旦系勘探发现于天然气富集规律[J]. 中国石油勘探, 20(2): 18-29

    Luo B, Zhou G, Luo W J, 2022. Discovery from Exploration of Lower Paleozoic-Sinian System in Central Sichuan Palaeo-uplift and Its Natural Gas Abundance Law[J]. . China Petroleum Exploration, 20(2): 18-29.

    [29]

    马肖琳, 2019. 川北地区震旦系灯影组储层特征研究[D]. 北京: 中国石油大学(北京).

    Ma X L, 2019. Research on Reservoir Characteristics of the Sinian Dengying Formation in Northern Sichuan Basin. Beijing: China University Of Petroleum.

    [30]

    Meng Q, Wang E, Hu J, 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block[J]. GSA Bulletin, 117(3-4): 396-410.

    [31]

    Morin J, Jolivet M, Barrier L, et al. , 2019. Planation Surfaces of the Tian Shan Range (Central Asia): Insight on Several 100 Million Years of Topographic Evolution[J]. Journal of Asian Earth Sciences, 177: 52-65. doi: 10.1016/j.jseaes.2019.03.011

    [32]

    邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学[M]. 青岛: 中国石油大学出版社.

    Qiu N S, Hu S B, He L J, 2019. Geothermics in Sedimentary Basins [M]. Qingdao: China University of Petroleum Press.

    [33]

    Rahn M, Seward D, 2000. How many track lengths do we need? Ontrack, 20: 12–15.

    [34]

    沈中延, 肖安成, 王亮, 等, 2010. 四川北部米仓山地区下三叠统内部不整合面的发现及其意义[J]. 岩石学报, 26(4): 1313-1321

    Shen Z Y, Xiao A C, Wang L, et al. , 2010. Unconformity in the Lower Triassic of Micangshan Area, northern Sichuan Province: Its discovery and significance[J]. Acta Petrologica Sinica, 2010, 26(4): 1313-1321.

    [35]

    孙东, 2011. 米仓山构造带构造特征及中-新生代构造演化[D]. 成都: 成都理工大学.

    Sun D, 2011. The structural character and Meso-Cenozoic evolution of Micang Mountain Structural Zone, Northern Sichuan Basin, China [D]. Chengdu: Chengdu University of Technology.

    [36]

    Tian Y, Kohn B P, Zhu C, et al. , 2012. Post-orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China[J]. Basin Research, 24(1): 70-90. doi: 10.1111/j.1365-2117.2011.00516.x

    [37]

    田云涛, 朱传庆, 徐明, 等, 2010. 白垩纪以来米仓山-汉南穹隆剥蚀过程及其构造意义: 磷灰石裂变径迹的证据[J]. 地球物理学报, 53(4): 920-930 doi: 10.3969/j.issn.0001-5733.2010.04.017

    Tian Y C, Shu C Q, Xu M, et al. , 2010. Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: evidences from Apatite Fission Track analysis[J]. Chinese Journal of Geophysics, 53(4): 920-930. doi: 10.3969/j.issn.0001-5733.2010.04.017

    [38]

    王国芝, 刘树根, 李娜, 等, 2014. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制[J]. 岩石学报, 30(3): 667-678

    Wang G Z, Liu S G, Li N, Et Al. , 2014. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin[J]. Acta Petrologica Sinica, 30(3): 667-678.

    [39]

    魏显贵, 杜思清, 何政伟, 等, 1997. 米仓山地区构造演化[J]. 矿物岩石, 17(S1): 107-113

    Wei X G, Du S Q, He Z W, et al. 1997. The tectonic evolution of Micangshan Area. Journal of Mineralogy and Petrology, 17(S1): 107-113 (in Chinese with English abstract).

    [40]

    Wolf R, Farley K, Silver L, 1996. Helium Diffusion and Low-temperature Thermochronometry of Apatite[J]. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5

    [41]

    Xu C H, Zhou Z Y, Chang Y, et al. , 2010. Genesis of Daba Arcuate Structural Belt Related to Adjacent Basement Upheavals: Constraints from Fission-Track and (U-Th)/He Thermochronology[J]. Sci. China Earth Sci, 53: 1634-1646. doi: 10.1007/s11430-010-4112-y

    [42]

    徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 54(4): 1052-1060 doi: 10.3969/j.issn.0001-5733.2011.04.020

    Xu M, Zhu C Q, Tian Y T, et al. , 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. doi: 10.3969/j.issn.0001-5733.2011.04.020

    [43]

    Yang Z, Ratschbacher L, Jonckheere R, et al. , 2013. Late-stage Foreland Growth of China’s Largest Orogens (Qinling, Tibet): Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China[J]. Lithosphere, 5(4): 420-437. doi: 10.1130/L260.1

    [44]

    Yang Z, Shen C, Ratschbacher L, et al. , 2017. Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 122(6), 4712-4740.

    [45]

    张茜, 董云鹏, 杨晨, 等, 2010. 米仓山隆升时代的沉积学制约[J]. 西北地质, 43(3): 12-19

    Zhang Q, Dong Y P, Yang C, Et Al. , 2022. Sedimentological Restriction During the Uplift Period in Micangshan [J]. NORTHWESTERN GEOLOGY, 2010, 43(3): 12-19.

    [46]

    张艳妮, 李荣西, 刘海青, 等, 2014. 四川盆地北缘大巴山前陆构造中-新生代构造隆升史[J]. 地球科学与环境学报, 36(1): 231 − 238.

    Zhang Y N, Li R X, Liu H Q, et al., 2014. Mesozoic-Cenozoic Tectonic Uplift History of Dabashan Foreland Structure in the Northern Rim of Sichuan Basin[J]. Journal of Earth Sciences and Environment, 36(1): 230 − 238 (in Chinese with English abstract).

    [47]

    Zhao B, Mao K, Cai Y, et al. 2020. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017 [J]. Earth Syst. Sci. Data, 12, 2555-2577.

    [48]

    Zhao J, Zhou M, 2009. Secular Evolution of The Neoproterozoic Lithospheric Mantle Underneath the Northern Margin of the Yangtze Block, South China [J]. Lithos, 107: 152-168. doi: 10.1016/j.lithos.2008.09.017

    [49]

    周学海, 2015. 米仓山前缘震旦系灯影组油气探讨[D]. 成都: 成都理工大学.

    Zhou X H, 2015. Oil-gas prospects Discussion of Sinian Dengying Formation at frontal area of Micang Mountain. Chengdu: Chengdu University of technology.

    [50]

    朱传庆, 邱楠生, 江强, 等, 2015. 川西坳陷鸭子河地区基于多种古温标的钻井热史恢复[J]. 地球物理学报, 58(10): 3660-3670 doi: 10.6038/cjg20151019

    Zhu C Q, Qiu N S, Jiang Q, et al. , 2015. Thermal history reconstruction based on multiple paleo-thermal records of the Yazihe area, western Sichuan depression[J]. Chinese Journal of Geophysics, 58(10): 3660-3670. doi: 10.6038/cjg20151019

  • 加载中

(7)

(3)

计量
  • 文章访问数:  951
  • PDF下载数:  411
  • 施引文献:  0
出版历程
收稿日期:  2021-08-31
修回日期:  2021-11-26
刊出日期:  2024-03-31

目录