Temporal-spatial distribution and evolution implication of the composite intrusion in the Xiuwacu W-Mo deposit,SE Tibetan Plateau
-
摘要: 休瓦促钨钼矿区位于义敦地体南段,是该区域唯一存在晚三叠世、晚白垩世和新生代酸性侵入体直接接触形成复式岩体的矿区。目前尚未对该复式岩体的岩浆演化过程开展过系统深入研究,限制了对该矿区及区域构造事件和岩浆演化的认识。本文通过系统梳理前人研究成果,开展东矿段黑云母花岗岩,西矿段二长花岗岩、花岗斑岩地质年代学和地球化学分析,探讨休瓦促复式岩体岩浆演化过程及其对区域构造的指示意义。研究表明,东矿段黑云母花岗岩结晶年龄为205.4±4.3 Ma,属高钾的钾玄质系列,偏铝质,富集轻稀土和大离子亲石元素Rb、Nd、Sm等,亏损重稀土和高场强元素Nb、Ta、Zr、Hf等,具有较明显的负Eu异常,氧逸度较高(fO2=-22.8~-6.8,平均-12.2),εHf(t)为正值(0.0~3.9),εNd(t)=-2.11~-1.18,87Sr/86Sr=0.707248~0.708070,锆石Hf二阶段模式年龄TDM2=1.32~1.68 Ga;西矿段二长花岗岩、花岗斑岩和细晶岩具有相同的物质来源和极为相似的地球化学特征,花岗斑岩年龄为80.2±1.5 Ma,与黑云母花岗岩相比,具有更强烈的负Eu异常,更低的氧逸度(fO2=-33.2~-3.2,平均-23.0),更低的εHf(t)值(-8.4~-2.1)、εNd(t)值(-8.59~-5.14);更高的87Sr/86Sr值(0.709987~0.713559),更老的锆石Hf二阶段模式年龄(1.62~2.36 Ga)。研究认为:晚三叠世黑云母花岗岩在甘孜-理塘洋西向俯冲的开放系统中通过岩浆结晶分异作用形成,岩浆主要来源于亏损地幔和少量俯冲洋壳物质;晚白垩世岩体物质来源于区域拉张环境下的古老下地壳和少量幔源物质,在相对封闭系统下通过岩浆结晶分异作用形成,同时在岩浆演化过程中受围岩同化混染作用影响。与成矿相关花岗岩的成因研究对揭示区域构造和成矿事件具有重要意义。Abstract: Located in the south section of the Yidun terrane (SYT), the Xiuwacu W-Mo deposit occurs in a composite intrusion composed by the Late Triassic, late Cretaceous and Cenozoic intrusions. The study on the magmatic evolution process of the composite intrusion is poor, limiting the understanding of the deposit and the relation ship between regional tectonic events and magmatic activities. Basing on previous research results, this paper carries out geochronological and geochemical analysis of the biotite granite in the east ore section, and monzogranite, granite porphyry, and aplite in the west ore section, so as to explore the magmatic evolution process of the Xiuwacu composite intrusion and its indicative significance to regional tectonic background. With a crystallization age of biotite granite of 205.4 ±4.3 Ma, the Xiuwacu composite intrasion belongs to high potassium shoshonitic aluminous series, enriched in light rare earth (LREE) and large ion lithophile elements(LILE) Rb, Nd and Sm, depleted in heavy rare earth (HREE) and high field strength elements (HFSE) Nb, Ta, Zr and HF. It is with an obvious negative Eu anomaly and a high oxygen fugacity (fo2 =-22.8~-6.8, average-12.2). The positive εHf(t) values are from 0.0 to 3.9, the εNd (t) are -2.11 to -1.18, the 87Sr / 86Sr are from 0.707248 to 0.708070, and the zircon Hf two-stage model age is 1.32~1.68 Ga. The monzogranite, granite porphyry and aplite in the west ore section have the same material source and very similar geochemical characteristics. The age of granite porphyry is 80.2 ± 1.5 Ma. Compared with the biotite granite, it is of a stronger negative Eu anomaly, a lower oxygen fugacity (fo2 = -33.2 ~ -3.2, average -23.0), a lower temperature, a negative εHf(t) value (-8.4 ~ -2.1) and εNd(t) value (-8.59 ~ -5.14) a higher 87Sr / 86Sr value (0.709987 ~ 0.713559) and an older zircon Hf two-stage model age (1.62 ~ 2.36 Ga). The results show that the Late Triassic biotite granite was formed by fractionation crystallization due to the Gantze-Litang oceanic westward subduction in an open-system. The parental magma mainly comes from depleted mantle and a small amount of subduction oceanic crust material. The late Cretaceous intrusion mainly comes from the ancient lower crust and a small amount of mantle derived material under the regional tensile environment. The magmatic fractionation crystallization under the relatively closed-system is affected by the assimilation and contamination of surrounding rock in the process of magmatic evolution. It is of great significance for revealing the relationship between regional tectonic and metallogenic events.
-
Key words:
- Xiuwacu /
- composite intrusion /
- fractionation crystallization /
- geochronology /
- geochemistry
-
-
Ballard J R, Palin J M, Williams I S, et al., 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by LA-ICP-MS and SHRIMP[J].Geology, 29(5):383-386.
Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon:Application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology, 144(3):347-364.
Chappell B W, White A J R, 1974, Two contrasting granite types[J].Pacific Geology,8:173-174.
Chiaradia M, 2009. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador)[J].Chemical Geology, 265(3-4):468-487.
Claiborne L L, Miller C F, Wooden J L, 2010, Trace element composition of igneous zircon:a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada[J].Contributions to Mineralogy and Petrology, 160:511-531.
Deschamps F, Duchêne S, de Sigoyer J., et al., 2017. Coeval Mantle-Derived and Crust-Derived Magmas Forming Two Neighbouring Plutons in the Songpan Ganze Accretionary Orogenic Wedge (SW China)[J].Journal of Petrology, 58:2221-2256.
Deng J, Wang Q F, Li G J, et al., 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 26(2):419-437.
Greentree M R, Li Z X, 2008. The oldest known rocks in south-western China:shrimp U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan group[J].Journal of Asian Earth sciences, 33:289-302.
Griffin W L, Wang X, Jackson S E, et al., 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J].Lithos, 61(3-4):237-269.
Guo Z, Wilson M, Liu J, 2007. Post-collisional adakites in south Tibet:products of partial melting of subduction-modifiedlower crust[J].Lithos, 96 (1):205-224.
He D F, Zhu W G, Zhong H, et al., 2013. Zircon U-Pb geochronology and elemental and Sr-Nd-Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun terrane, SW China[J].Journal of Asian Earth Sciences, 67-68:1-17.
He W Y, Xie S X, Liu X D, et al., 2018. Geochronology and geochemistry of the Donglufang porphyry-skarn MoeCu deposit in the southern Yidun Terrane and their geological significances[J].Geoscience Frontier,9:1433-1450.
Horn I, Rudnick R L, McDonough W F, 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS:Application to U-Pb geochronology[J].Chemical Geology, 164(3-4):281-301.
Hoskin P W O, Black L P, 2000, Metamorphiczircon formation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology, 18:423-439.
Jin X, Zhang Y X, Whiteney D L, et al., 2021. Crustal material recycling induced by subduction erosion and subdunction-channel exhumation:A case study of central Tibet (western China) based on P-T-t paths of the eclogite-bearing Baqing metamorphic complex[J].GSA Bulletin,133(7-8):1575-1599.
Kemp A I S, Hawkesworth C J, Foster G L, et al., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J].Science, 315(5814):980-983.
Košler J, Fonneland H, Sylvester P, et al., 2002. U-Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques[J].Chemical Geology, 182(2-4):605-618.
Li WC, Zeng PS, Hou ZQ, et al., 2011. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan province, southwest China[J].Economic Geology, 106(1), 79-92.
Li W C, Pan G T, Zhang X F, et al., 2021. Tectonic evolution of the Paleo-Tethys multi-arc-basin- terrane system and its continuous control of the multi-episodic metallogenesis in the Sanjiang Region, SW China[J].Journal of Asian Earth Sciences:doi.org/10.1016/j. jseaes. 2021.104932.
Ludwig K R, 2001. SQUID 1.02, A User's Manual[M]. Berkeley:Berkeley Geochronological Center, Special Publication No. 2:1-17.
Maniar P D, Piccoli P M, 1989. Tectonic discrimination of granitoids[J].GSA Bulletin, 101(5):635-643.
Meng J Y, Yang L Q, Lü L, et al., 2013. Re-Os dating of molybdenite from the Hongshan Cu-Mo deposit in Northwest Yunnan and its implications for mineralization[J].Acta Petrologica Sinica, 29.4(2013):1214-1222.
Nandedkar R H, Ulmer P, Müntener O, 2014, Fractional crystallization of primitive, hydrous arc magmas:an experimental study at 0.7 GPa[J].Contributions to Mineralogy and Petrology, 167(6):1-27.
Peng T P, Zhao G C, Fan W M, et al., 2014, Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, Eastern Tibetan Plateau:Petrogenesis and their bearings with Cu mineralization[J].Journal of Asian Earth Sciences, 80:18-33.
Qi L, Hu J, Gregoire D C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J].Talanta 51, 507-513.
Reid A J, Wilson C J L, Liu S, 2005. Structural evidence for the Permo-Triassic tectonicevolution of the Yidun arc, eastern Tibetan Plateau[J].Journal of Structural Geology, 27:119-137.
Reid A J, Wilson C J L, Chen J L, et al., 2007. Mesozoic plutons of the Yidun Arc, SWChina:U/Pb geochronology and Hf isotopic signature[J].Ore Geol. Rev. 31:88-106.
Roger F, Jolivet M, Malavieille J, 2010. The tectonic evolution of the SongpanGarzê (North Tibet) and adjacent areas from Proterozoic to Present:a synthesis[J].Journal of Asian Earth Sciences, 39:254-269.
Wang X S, Bi X W, Leng C B, et al., 2014a.Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews, 61:73-95.
Wang X S, Hu R Z, Bi X W, et al., 2014b. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos, 208-209:202-219.
Watson B E, Harrison E B, 1983.Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters, 64:295-304.
WuR X, Zheng Y F, Wu Y B, et al., 2006. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China[J].Precambrian Research, 146(3-4):179-212.
Wu T, Xiao L, Wilde S A, et al., 2017. A mixed source for the Late Triassic Garzê-Daocheng granitic belt and its implications for the tectonic evolution of the Yidun arc belt, eastern Tibetan Plateau[J].Lithos, 288-289:214-230.
Xiao L, Zhang H F, Clemens J D, et al., 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau:Geochronology, petrogenesis and implications for tectonic evolution[J].Lithos, 96:436-452.
Yan T T, Zhang X F, Wang D, et al., 2020. Geochronology, mineralogy and geochemistry of the Late Triassic Xiuwacu biotite granite in the southern Yidun Terrane, southwest China:Insights into the petrogenesis and magmatic fertility[J].Geological Journal, 55:806-820.
Yang L Q, Deng J, Gao X, et al., 2017. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:Implications for Late Cretaceous Mo-Cu metallogenesis in thesouthern Yidun Terrane, SE Tibetan Plateau[J].Ore Geology Reviews, 81:1015-1032.
Zhang H R, Hou Z Q, 2018. Metallogenesis within continental collision zones:comparisons of modern collisional orogens[J].China Earth Sci, 61:1737-60.
Zhang X F, Li W C, Yang Z, et al., 2020. Mineralization significance of Aplite in the Xiuwacu W-Mo deposit, NW Yunnan, China:Constrains by geochronology, oxygen fugacity and geochemistry[J].Journal of Asian Earth Sciences:doi.org/10.1016/j.jseaes. 2020.104555.
Zhang X F, Li W C, Wang R, et al., 2021a. Preservation of Xiuwacu W-Mo deposit and its constraint on the uplifting history of Eastern Tibetan Plateau[J].Ore Geology Reviews:doi.org/10.1016/j.oregeorev.2021.103995.
Zhang X F, Li W C, Yang Z, et al., 2021b. Stable isotopes and Fluid Inclusions constraints on the Source and Evolution of Ore Fluids in the Xiuwacu W-Mo Granite-related Quartz-vein deposit, Yunnan Province, China[J].Ore Geology Reviews:doi.org/10.1016/j. oregeorev.2021.104245.
ZhaoX F, Zhou M F, Li J W, et al., 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for tectonic evolution of the Yangtze Block[J].Precambrian Research, 182:57-69.
Zheng Y F, Mao J W, Chen Y J, et al., 2019. Hydrothermal ore deposits in collisional orogens[J].Science Bulletin, 64:205-212.
陈莉, 刘函, 贺娟, 2020. 滇西北休瓦促钨钼矿床两期岩浆作用的LA-ICP-MS锆石U-Pb年龄及矿床成因[J].地质通报, 39(6):929-942.
侯增谦, 杨岳清, 王海平, 等, 2003. 三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 1-345.
江小均, 陈政宇, 李文昌, 等, 2019. 滇西北休瓦促晚白垩世岩浆-成矿作用动力学机制探讨[J].地学前缘, 26(2):137-156.
李建康, 李文昌, 王登红, 等, 2007. 中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报, 23(10):2415-2422.
李文昌,潘桂棠,侯增谦,等, 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M].北京:地质出版社, 1-491.
李文昌, 尹光侯, 余海军, 等, 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报, 27(9):2541-2552.
李文昌, 余海军, 尹光候, 2013. 西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 29(4):1129-1144.
刘学龙, 李文昌, 张娜, 等, 2016. 扬子西缘乡城-丽江结合带燕山期斑岩Mo多金属矿床成矿系统[J].岩石学报, 32(8):2281-2302.
刘颖, 刘海臣, 李献华, 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学, 25(6):552-558.
潘桂棠, 李兴振,王立全, 等,2001.青藏高原区域构造格局及其多岛弧盆系的空间配置[J].沉积与特提斯地质, 21(3):1-26.
潘桂棠, 徐强, 侯增谦, 等,2003.西南"三江"多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,1-420.
潘桂棠, 丁俊,姚东生, 等,2004.青藏高原及邻区地质图(1:150万,附说明书)[M].成都:成都地图出版社.
任飞,尹福光,孙洁,等, 2021. 甘孜-理塘俯冲增生杂岩带中二叠世构造演化-来自龙蟠蛇绿岩年龄、地区化学的证据[J].地质通报, 40(6):942-954.
王新松, 毕献武, 胡瑞忠, 等, 2015. 滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报, 31(11):3171-3188.
王新松,毕献武,冷成彪,等, 2011. 滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].矿物学报, 31(3):315-321.
杨立强, 高雪, 和文言, 2015. 义敦岛弧晚白垩世斑岩成矿系统[J].岩石学报, 31(11):3155-3170.
杨岳清, 侯增谦, 黄典豪, 等, 2002. 中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报, 23(1):17-24.
余海军, 李文昌, 尹光候, 等, 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J].岩石学报, 31(11):3217-3233
余海军, 李文昌, 2016. 滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据[J].岩石学报, 32(8):2265-2280.
张向飞, 李文昌, 尹光候, 等, 2016.云南省香格里拉县休瓦促钨钼矿床就矿机制研究[J].矿床地质(S2):175-176.
张向飞, 李文昌, 尹光候, 等, 2017.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报,33(7):2018-2036.
张向飞, 2018. 滇西北休瓦促钨钼矿区复式岩体成岩成矿作用[D].北京:中国地质大学(北京),1-154.
-
计量
- 文章访问数: 759
- PDF下载数: 46
- 施引文献: 0