Geological genesis of the Juexue red strata landslide in Qamdo, eastern Tibet
-
摘要: 觉学红层滑坡发育于向斜北东翼形成的反向坡,是近年来依托川藏交通廊道沿线灾害地质调查在新厘定的“藏东昌都红层区”发现的典型红层滑坡。为厘定其成因,以基础地质为切入点,进行了详实的地质调查与分析。结果表明,滑坡区地层岩性主要为中侏罗统东大桥组(J2d)紫红色、灰色薄层泥岩、粉砂质泥岩夹中-厚层砂岩。地层内发育与区域构造活动配套的轴面劈理(S1)、“X”型共轭剪节理(S2、S3)和层间剪切劈理(S4)。文章从沉积环境控制地层岩性及物理力学性质、区域构造演化制约斜坡结构与岩体结构面组合特征和地下水及重力作用加剧斜坡失稳等角度,提出觉学红层滑坡形成于内外地质营力耦合的失稳机理,对区域红层滑坡防治和川藏交通建设具有一定参考价值。Abstract: The Juxue red strata landslide developed on the reverse slope formed in the northeast wing of the syncline, and it is a typical red strata landslide found in the newly defined "Qamdo red strata area" based on the geohazards survey along the Sichuan-Tibet traffic corridor in recent years. To determine its genesis, based on basic geology, detailed geological investigation and analysis are carried out. The results show that the stratigraphic lithology of the landslide area is mainly purplish red and gray thin mudstone and silty mudstone interbedded with middle-thick sandstone of middle Jurassic Dongdaqiao Formation (J2d). The axial plane cleavage (S1), X-type conjugate shear joints (S2, S3) and interlayer shear cleavage (S4) are developed in the strata, which are compatible with regional tectonic activity. From the point of view that sedimentary environment controlling stratum lithology and physical and mechanical properties, regional tectonic evolution restricting slope structure and rock mass structural plane combination characteristics, and groundwater and gravity aggravating slope instability, it is suggested that Juexue red strata landslide is formed by the coupling mechanism of internal and external geological forces, which has certain reference value for regional red strata landslide prevention and control and Sichuan-Tibet transportation construction.
-
-
An Z S, Kutzbach J E, Prell W L, et al, 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 411(6833): 62-66.
Chung S, Chu M, Zhang Y, et al, 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3-4): 173-196.
Huang R Q, Li W L, 2011. Formation, distribution and risk control of landslides in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 3(2): 97-116.
Kapp P, Decelles P G, 2019. Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 319(3): 159-254.
Kirkpatrick H M, Moon S, Yin A, et al, 2020. Impact of fault damage on eastern Tibet topography[J]. Geology, 49(1): 30-34.
Leech M L, Singh S, Jain A K, et al, 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth & Planetary Science Letters, 234(1): 83-97.
Liu S S, Deng B, Li Z, et al, 2013. Geological evolution of the longmenshan intracontinental composite orogen and the eastern margin of the Tibetan Plateau[J]. Journal of Earth Science, 24(6): 874-890.
Zhu D C, Zhao Z D, Niu Y L, et al, 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4): 1429-1454.
蔡俊超,2020. 反倾岩质边坡柔性弯曲型倾倒变形全过程力学行为及稳定性研究[D]. 成都:成都理工大学.
曹代勇,宋时雨,马志凯,等,2019. 晚三叠世昌都盆地构造背景及对成煤作用的控制[J]. 地学前缘, 26(2): 169-178.
程强,寇小兵,黄绍槟,等,2004. 中国红层的分布及地质环境特征[J]. 工程地质学报, 12(1): 34-40.
杜岩,谢谟文,吴志祥,等,2019. 平推式滑坡成因机制及其稳定性评价[J]. 岩石力学与工程学报, 38(S1): 2871-2880.
范建军,李才,彭虎,等,2014. 藏北龙木错-双湖-澜沧江板块缝合带发现晚石炭世-早二叠世洋岛型岩石组合[J]. 地质通报, 33(11): 1690-1695.
范宣梅,许强,张倬元,等,2008. 平推式滑坡成因机制研究[J]. 岩石力学与工程学报, 27(S2): 3753-3759.
耿兴福,苗天德,2014. 近水平层状红层软岩滑坡成因机制研究[J]. 地质灾害与环境保护, 25(1): 9-12.
黄润秋,2000. 岩石高边坡的时效变形分析及其工程地质意义[J]. 工程地质学报, 8(2): 148-153.
黄润秋,2003. 中国西部地区典型岩质滑坡机理研究[J]. 第四纪研究, 23(6): 640-647.
黄润秋,2004. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 19(3): 443-450.
黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433-454.
黄润秋,李渝生,严明,2017. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报, 25(5): 1165-1181.
李才,2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 54(1): 105-119.
李洪梁,黄海,李元灵,等,2022. 川藏铁路沿线板块缝合带地质灾害效应研究[J]. 地球科学,doi:10.3799/dqkx.2022.263.
李洪梁,李光明,张志,等,2021a. 特提斯喜马拉雅东段扎西康矿集区姐纳各普金矿床成因:黄铁矿He-Ar及原位S同位素约束[J]. 地球科学, 46(12): 4291-4315.
李洪梁,施富强,王立娟,等,2021. 基于三维激光扫描技术的金沙江“11·03”白格堰塞湖应急测绘研究[J]. 金属矿山, 50(4): 154-159.
李洪梁,王立娟,尹恒,等,2021b. 金属矿山高速率筑坝尾矿库稳定性分析[J]. 矿业研究与开发, 40(1): 95-102.
李洪梁,王立娟,马松,等,2019a. 深切割区尾矿库排洪系统“空天地一体化”行洪能力评估[J]. 金属矿山, 48(1): 181-186.
李洪梁,李光明,刘洪,等,2019b. 拉萨地体西段达若地区古新世花岗斑岩成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束[J]. 地球科学, 44(7): 2275-2297.
李洪梁,黄海,李元灵,等,2022. 川藏交通廊道沿线板块缝合带地质灾害效应研究[J]. 地球科学, 47(12): 1-23.
李江,许强,胡泽铭,等,2015. 川东红层原状滑带土饱水软化试验研究[J]. 岩石力学与工程学报, 34(S2): 4333-4342.
李江,许强,王森,等,2016. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 35(S2): 4053-4062.
李晓,李守定,陈剑,等,2008. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 27(9): 1792-1806.
马文著,徐衍,李晓雷,等,2020. 基于黏聚力裂缝模型的反倾层状岩质边坡倾倒破坏模拟[J]. 水文地质工程地质, 47(5): 150-160.
莫宣学,赵志丹,邓晋福,等,2003. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(3): 135-148.
莫宣学,赵志丹,周肃,等,2007. 印度-亚洲大陆碰撞的时限[J]. 地质通报, 26(10): 1240-1244.
潘桂棠,肖庆辉,陆松年,等,2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28.
潘桂棠,任飞,尹福光,等,2020a. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 45(7): 2293-2304.
潘桂棠,王立全,耿全如,等,2020b. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构--特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19.
任光明,聂德新,刘高,2003. 反倾向岩质斜坡变形破坏特征研究[J]. 岩石力学与工程学报, 22(S2): 2707-2710.
覃建勋,韩鹏,车晓超,等,2014. 利用荣玛地区温泉钙华δ18O及微量元素重建西藏全新世以来古气候[J]. 地学前缘, 21(2): 312-322.
谭儒蛟,杨旭朝,胡瑞林,2009. 反倾岩体边坡变形机制与稳定性评价研究综述[J]. 岩土力学, 30(S2): 479-484.
唐菊兴,钟康惠,刘肇昌,等,2006. 藏东缘昌都大型复合盆地喜马拉雅期陆内造山与成矿作用[J]. 地质学报, 80(9): 1364-1376.
陶志刚,任树林,郝宇,等,2021. 层状反倾边坡破坏机制及NPR锚索控制效果物理模型试验[J]. 岩土力学, 42(4): 976-990.
王保弟,王立全,王冬兵,等,2021. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 41(2): 246-264.
魏君奇,王晓地,庄晓,等,2008. 澜沧江缝合带吉岔蛇纹岩中闪长岩和俄咱辉长岩中锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 24(6): 1297-1301.
吴崇筠,刘宝珺,王德发,等,1981. 碎屑岩沉积相模式[J]. 石油学报, 2(4): 1-10.
吴红刚,马惠民,侯殿英,等,2010. 青海高原龙穆尔沟红层滑坡变形机制的地质分析与模型试验研究[J]. 岩石力学与工程学报, 29(10): 2094-2102.
吴玮江,何琼,程建祥,等,1993. 甘肃省东部滑坡发育规律[J]. 中国地质灾害与防治学报, 4(3): 91-97.
吴悠,陈红汉,肖秋苟,等,2010. 青藏高原昌都盆地上三叠统流体活动特征[J]. 地质科技情报, 29(2): 82-86.
武鹏,2015. 红粘土的工程地质性质与滑坡形成机理[D]. 西安:长安大学.
许志琴,杨经绥,李海兵,等,2011. 印度-亚洲大地碰撞构造[J]. 地质学报, 85(1): 1-33.
许志琴,杨经绥,李文昌,等,2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847-1860.
杨国香,叶海林,伍法权,等,2012. 反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究[J]. 岩石力学与工程学报, 31(11): 2214-2221.
殷坤龙,周春梅,柴波,2014. 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报, 33(8): 1635-1643.
占王忠,谭富文,陈明,2018. 藏东昌都盆地沉积构造演化及油气远景分析[J]. 沉积与特提斯地质, 38(4): 85-96.
张明,胡瑞林,殷跃平,等,2014. 川东缓倾红层中降雨诱发型滑坡机制研究[J]. 岩石力学与工程学报, 33(S2): 3783-3790.
张涛,谢忠胜,石胜伟,等,2017. 川东红层缓倾岩质滑坡的演化过程及其识别标志探讨[J]. 工程地质学报, 25(2): 496-503.
张以晨,佴磊,沈世伟,等,2011. 反倾层状岩质边坡倾倒破坏力学模型[J]. 吉林大学学报(地球科学版), 41(S1): 207-213.
张永双,石菊松,孙萍,等,2009. 汶川地震内外动力耦合及灾害实例[J]. 地质力学学报, 15(2): 131-141.
张永双,巴仁基,任三绍,等,2020. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质, 47(6): 1637-1645.
张永双,杜国梁,郭长宝,等,2021. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 95(3): 605-617.
郑达,王沁沅,毛峰,等,2019. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报, 38(10): 1954-1963.
朱弟成,王青,詹琼窑,等,2021. 三江北段晚三叠世构造-岩浆作用和几个相关的科学问题[J]. 沉积与特提斯地质, 41(2): 232-245.
朱宗敏,寸金鸿,庞龙飞,等,2007. 西藏米林地区湖积物的磁性特征及其古气候意义[J]. 地球科学, 32(5): 622-628.
-
计量
- 文章访问数: 880
- PDF下载数: 100
- 施引文献: 0