Exploration and research progresses of rare metals in Himalayan belt, Tibet
-
摘要: 长期以来,西藏喜马拉雅带以发育较多金、金锑及铅锌多金属矿为显著特色,而稀有金属矿未曾列入主流找矿方向。近年来,该带由于铍、锂等稀有金属矿的重要找矿新发现而备受广大学者关注,其相应的成矿作用研究亦有较大进展。本文在喜马拉雅带已有地质找矿成果及科学研究资料的基础上,对该带新发现的稀有金属矿勘查与研究进展进行了总结。本文提出:喜马拉雅带主要发育有伟晶岩型锂-铍矿、锡石-硫化物型锡-铍矿、矽卡岩型铍-锡-钨矿、矽卡岩型铍-铌-钽矿、钠长石花岗岩型铍-铌-钽矿、热液脉型萤石-铍矿6种稀有金属矿化类型,其中伟晶岩型锂-铍矿及锡石-硫化物型锡-铍矿最具经济意义上的找矿价值。这些稀有金属成矿作用均与中新世淡色花岗岩浆活动密切相关,属于岩浆高度结晶分异的产物,是印度-亚洲大陆碰撞造山成矿作用中的新成员,并构成了喜马拉雅带与淡色花岗岩相关的稀有金属矿成矿系列。为指导找矿勘查,今后喜马拉雅稀有金属成矿作用研究应加强如下几方面:(1)高分异淡色花岗岩-伟晶岩岩相分带与相应的稀有金属分带;(2)锂-铍-铌-钽-钨-锡共生分离机制;(3)喜马拉雅式稀有金属矿成矿模式与勘查模型;(4)稀有金属与铅锌-金锑成矿作用的关系。喜马拉雅带新发现的稀有金属成矿作用大部分靠近我国边境地区,通过进一步的勘查评价工作有望形成西藏地区具有战略意义的稀有金属成矿带。Abstract: For a long time, it is believed that the Himalayan belt of Tibet is characterized by abundant polymetallic Au, Au-Sb and Pb-Zn deposits, while rare metalsare not included in the main prospecting targets. The Himalayanbelt has attracted extensive attentions due to new discoveries of rare metals such as beryllium and lithium in recent years.Based on the geological prospecting achievements and scientific research progresses, this paper summarizes the exploration and research progresses of newly discovered rare metal deposits in the Himalayan belt. It is proposed that six types of rare metal mineralization occurred in the Himalayan belt, including pegmatite type lithium-beryllium deposit, cassiterite-sulfide type tin-beryllium deposit, skarn type beryllium-tin-tungsten deposit, skarn type beryllium-niobium-tantalite deposit, albialite granite type beryllium-niobium-tantalite deposit, and hydrothermal vein type fluorite-beryllium deposit. Among them, the pegmatite type lithium-beryllium ore and cassiterite-sulfide type tin-beryllium deposits have the most economic prospecting values. These rare metal deposits are closely related to the Miocene leucogranites, and are the products of the high degree of crystallization differentiation of magmatism. They are new members of the Indo-Asian continental collisional orogenic mineralization, and constitute the rare metal metallogenic series related to the leucogranites in the Himalayan belt. It is suggested that the future geological research works in the region should be focused on: (1)Zonings of the highly differentiated leucogranites lithofacies and their corresponding rare metals; (2) The symbiotic and separate mechanisms of lithium, beryllium, niobium, tantalum, tungsten, and tin; (3) Metallogenic model and exploration model for Himalayan type rare metal deposits; (4) Relationship between rare metals and Pb-Zn-Au-Sb mineralization. Most of the newly discovered rare metal deposits in the Himalayan belt are close to the border areas of China. Through further exploration and evaluation, it is expected to be a new strategic rare metal metallogenic belt in Tibet.
-
Key words:
- rare metal /
- Himalayan metallogenic belt /
- exploration progress /
- prospecting direction
-
-
Cao H W,Li G M,Zhang R Q,et al.,2021.Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya.Evidence from geology,geochronology,fluid inclusions and multiple isotopes[J].Gondwana Research,92:72-101.
Cao H W,Li G M,Zhang Z,et al.,2020.Miocene Sn polymetallic mineralization in the Tethyan Himalaya,southeastern Tibet.A case study of the Cuonadong deposit[J].Ore Geology Reviews,119:103403.
Ding H X,Zhang Z M,2016.Neoproterozoic granitoids in the eastern Himalayan orogen and their tectonic implications[J].Precambrian Research,285:1-9.
Ding H X,Zhang Z M,Dong X,et al.,2015.Cambrian ultrapotassic rhyolites from the Lhasa terrane,south Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana[J].Gondwana Research,27(4):1616-1629.
Duan J,Tang J,Lin B,2016.Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit,South Tibet:Implications for the source of the ore-forming metals[J].Ore Geology Reviews,78:58-68.
Gou Z B,Zhang Z M,Dong X,et al.,2016.Petrogenesis and tectonic implications of the Yadong leucogranites,southern Himalaya[J].Lithos,256-257:300-310.
Harris N,Massey J,1994.Decompression and anatexis of Himalayan metapelites[J].Tectonics,13(6):1537-1546.
Heron A M,1922.Geological results of the Mount Everest expedition,1921[J].The Geographical Journal,59(6):418-431.
Hou Z Q,Zhang H,2015.Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J].Ore Geology Reviews,70:346-384.
Huang C,Zhao Z,Li G,et al.,2017.Leucogranites in Lhozag,southern Tibet:Implications for the tectonic evolution of the eastern Himalaya[J].Lithos,294-295:246-262.
Huang Y,Zhang L,Liang W,et al.,2019.Petrogenesis of the Early Cretaceous Kada igneous rocks from Tethyan Himalaya:Implications for initial break-up of eastern Gondwana[J].Geological Journal,54:1294-1316.
Jankovic S,1977.The Copper Deposits and Geotectonic Setting of the Thethyan Eurasian Metallogenic Belt[J].Mineralium Deposita,12:37-47.
Kohn M J,2014.Himalayan metamorphism and its tectonic implications[J].Annual Review of Earth and Planetary Sciences,42(1):381-419.
Le Fort P,1973.Les leucogranitesàtourmaline de l’Himalaya sur l’exemple du granite du Manaslu (Népal central)[J].Bull.Soc.Geol.France,15:555-561.
Le Fort P,1975.Himalayas:the Collided Range.Present Knowledge of the Continental Arc[J].American Journal of Science,275(1):1-44.
Liu C,Wang R C,Wu F Y,et al.,2020.Spodumene pegmatites from the Pusila pluton in the higher Himalaya,South Tibet:Lithium mineralization in a highly fractionated leucogranite batholith[J].Lithos,358-359:105-421.
Liu Z C,Wu F Y,Ding L,et al.,2016.Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome,Tethyan Himalaya,South Tibet[J].Lithos,240-243:337-354.
Liu Z C,Wu F Y,Ji W Q,et al.,2014.Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J].Lithos,208-209:118-136.
Liu Z C,Wu F Y,Liu X C,et al.,2019.Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome,southern Tibet[J].Lithos,340-341:71-86.
Liu Z C,Wu F Y,Qiu Z L,et al.,2017.Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya[J].Tectonophysics,721:106-122.
Liu Z,Zhou Q,Lai Y,et al.,2015.Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya:Implications for the break-up of Eastern Gondwana[J].Lithos,236-237:190-202.
Pan G T,Wang L Q,Li R S,et al.,2012.Tectonic evolution of the Qinghai-Tibet Plateau[J].Journal of Asian Earth Sciences,53:3-14.
Searle M P,Godin L,2003.The South Tibetan Detachment System and the Manaslu Leucogranite:a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya,Nepal[J].The Journal of Geology,111(5):505-523.
Sun X,Zheng Y,Pirajno F,et al.,2018.Geology,S-Pb isotopes,and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet:implications for multiple mineralization events at Zhaxikang[J].Mineralium Deposita,53:453-458.
Wang D,Sun X,Zheng Y,et al.,2017.Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet:Constraints from Fe-Zn isotopes[J].Ore Geology Reviews,84:347-363.
Wang D,Zheng Y,Mathur R,et al.,2018.The Fe-Zn Isotopic Characteristics and Fractionation Models:Implications for the Genesis of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet[J].Geofluids,1-23.
Wang D,Zheng Y,Mathur R,et al.,2019.Multiple mineralization events in the Zhaxikang Sb-Pb-Zn-Ag deposit and their relationship with geodynamic evolution in the North Himalayan Metallogenic Belt,South Tibet[J].Ore Geology Reviews,105:201-215.
Wang Y,Zeng L,Gao L E,et al.,2017.Neoproterozoic magmatism in eastern Himalayan terrane[J].Science Bulletin,62,415-424.
Wu F Y,Liu X C,Liu Z C,et al.,2020.Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J].Lithos,352-353:105319.
Xie Y,Li L,Wang B,Li G,et al.,2017.Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet,China:Evidence for a magmatic link[J].Ore Geology Reviews,80:891-909.
Yang Z,Hou Z,Meng X,et al.,2009.Post-collisional Sb and Au mineralization related to the South Tibetan detachment system,Himalayan orogen[J].Ore Geology Reviews,36:194-212.
Yin A,Harrison T M,2000.Geologic evolution of the Himalayan-Tibetan orogen[J].Earth and Planetary Science Letters,28:211-280.
Yuan S,Williams-Jones A E,Romer R L,et al.,2019.Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces:Insights from the Nanling Region,China[J].Economic Geology,114(5):1005-1012.
Zhang L K,Li G M,Santosh M,et al.,2019.Cambrian magmatism in the Tethys Himalaya and implications for the evolution of the Proto-Tethys along the northern Gondwana margin:A case study and overview[J].Geological Journal,54:2545-2565.
Zeng L S,Gao L E,Xie K J,et al.,2011.Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust[J].Earth and Planetary Science Letters,303:251-266.
Zeng L S,Gao L E,Tang S H,et al.,2015.Eocene magmatism in the Tethyan Himalaya,southern Tibet[J].Geological Society,London,Special Publications,412:287-316.
Zhang Z,Li G M,Zhang L K,et al.,2020.Genesis of the Mingsai Au deposit,southern Tibet:Constraints from geology,fluid inclusions,40Ar/39Ar geochronology,H-O isotopes,and in situ sulfur isotope compositions of pyrite[J].Ore Geology Reviews,122(5):103488.
Zhang Z,Li G M,Zhang L K,et al.,2021.Neoproterozoic bimodal magmatism in the eastern Himalayan orogen:Tectonic implications for the Rodinia supercontinent evolution[J].Gondwana Research,94:87-105.
Zheng Y C,Hou Z Q,Fu Q,et al.,2016.Mantle inputs to Himalayan anatexis:Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J].Lithos,264,125-140.
Zhu D C,Mo X X,Pan G T,et al.,2008.Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet:Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J].Lithos,100:147-173.
Zhu D C,Chung S L,Mo X X,et al.,2009.The 132 Ma Comei-Bunbury large igneous province:Remnants identified in present-day southeastern Tibet and southwestern Australia[J].Geology,37:583-586.
Zhou Q,Liu Z,Lai Y,et al.,2017.Petrogenesis of mafic and felsic rocks from the Comei large igneous province,South Tibet:Implications for the initial activity of the Kerguelen plume[J].Geological Society of America Bulletin,130:1-14.
Zhou Q,Li W,Qing C,et al.,2018.Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya:evidence from structures,Re-Os-Pb-S isotopes,and fluid inclusions[J].Mineralium Deposita,53:585-600.
陈骏,陆建军,陈卫锋,等,2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.
董随亮,黄勇,李光明,等,2017.藏南姐纳各普金矿地质特征及成矿时代约束-对扎西康矿集区铅锌金锑成矿系统的启示[J].资源与产业,19:1-9.
付建刚,李光明,董随亮,等,2020.西藏北喜马拉雅拉隆穹隆含Be、Nb、Ta钠长石花岗岩的识别及意义[J].沉积与特提斯地质,40(2):91-103.
付建刚,李光明,王根厚,等,2021.西藏拉隆穹窿地质特征和Be-Nb-Ta稀有金属矿化的厘定及其战略意义[J].大地构造与成矿学,45(5):913-933.
何畅通,秦克章,李金祥,等,2020.喜马拉雅东段错那洞钨-锡-铍矿床中铍的赋存状态及成因机制初探[J].岩石学报,36(2):3593-3606.
侯增谦,吕庆田,王安建,等,2003.初论陆-陆碰撞与成矿作用—以青藏高原造山带为例[J].矿床地质,22(4):319-333.
侯增谦,潘桂棠,王安建,等,2006a.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521-543.
侯增谦,曲晓明,杨竹森,等,2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
侯增谦,王二七,2008.印度—亚洲大陆碰撞成矿作用主要研究进展[J].地球学报,29(3):275-292.
侯增谦,2010.大陆碰撞成矿论[J].地质学报,84(1):30-58.
黄勇,付建刚,李光明,等,2019.藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现[J].地球科学,44:2197-2206.
赖祥政,余其美.1989.喜马拉雅成矿带的矿床特征及找矿前景[J].矿物岩石,9(2):108-111.
梁维,侯增谦,杨竹森,等,2013.藏南扎西康大型铅锌银锑多金属矿床叠加改造成矿作用初探[J].岩石学报,29(11):3828-3842.
梁维,郑远川,杨竹森,等,2014.藏南扎西康铅锌银锑多金属矿多期多阶段成矿特征及其指示意义[J].岩石矿物学杂志,33(1):64-78.
梁维,杨竹森,郑远川,2015.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J].地质学报,89(3):560-568.
梁维,郑远川,2019.藏南吉松铅锌矿成矿时代的厘定.热液绢云母Ar-Ar年龄[J].中国地质,46:126-139.
梁维,李光明,张林奎,等,2020.藏南错那洞铍稀有多金属成矿时代:来自热液白云母Ar-Ar年龄的约束[J].沉积与特提斯地质,40(1):76-81.
梁维,李光明,巴桑元旦,等,2021.喜马拉雅带片麻岩穹窿成矿作用—以扎西康矿集区错那洞穹窿为例[J].矿床地质,40(5):932-948.
林彬,唐菊兴,郑文宝,等,2016.西藏柯月锌多金属矿床地质特征及成矿时代初步研究[J].矿床地质,1:33-50.
李应栩,李光明,董随亮,等,2015.西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J].矿物岩石地球化学通报,34(3):571-582.
李光明,张林奎,焦彦杰,等,2017.西藏喜马拉雅成矿带错那洞超大型铍钨锡多金属矿床的发现及意义[J].矿床地质,36(4):1003-1008.
李光明,张林奎,张志,等,2021.青藏高原南部的主要战略性矿产:勘查进展、资源潜力与找矿方向[J].沉积与特提斯地质,41(1):351-360.
刘晨,王汝成,吴福元,等,2021.珠峰地区锂成矿作用:喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩[J].岩石学报,37:3287-3294.
刘小驰,吴福元,王汝成,等,2021.珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示[J].岩石学报,37:3295-3304.
聂凤军,胡朋,江思宏,等,2005.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报,79(3):373-385.
秦克章,赵俊兴,何畅通,等,2021.喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J].岩石学报,37(11):3277-3286.
戚学祥,李天福,孟祥金,等,2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J].岩石学报,24(7):1638-1648.
吴福元,刘志超,刘小驰,等,2015.喜马拉雅淡色花岗岩[J].岩石学报,31(1):1-36.
吴福元,王汝成,刘小驰,等,2021.喜马拉雅稀有金属成矿作用研究的新突破[J].岩石学报,37(11):3261-3276.
杨竹森,侯增谦,高伟,等,2006.藏南拆离系锑金成矿特征与成因模式[J].地质学报,80(1):1377-1391.
郑有业,赵永鑫,王苹,等,2004.藏南金锑成矿带成矿规律研究及找矿取得重大进展[J].地球科学,29(1):44-68.
郑有业,孙祥,田立明,等,2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代[J].大地构造与成矿学,38(1):108-118.
张林奎,张志,李光明,等,2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因[J].地球科学,43(8):2664-2683.
张志,张林奎,李光明,等,2017.北喜马拉雅错那洞穹隆-片麻岩穹隆新成员与穹隆控矿新命题[J].地球学报,38(5):754-766.
-
计量
- 文章访问数: 1502
- PDF下载数: 144
- 施引文献: 0