Characteristics and geological significance of inclusions in searlesite from the Fengcheng Formation in the Junggar Basin, China.
-
摘要:
准噶尔盆地风城组的含钠白云岩和油页岩是重要的油气藏和主要的烃源岩,正确认识硅硼钠石的成因,对明确含钠白云岩的成因以及预测优质白云岩储层具有重要意义。为探究风城组白云岩、硅质岩的成因,本文选取准噶尔盆地风城组60件岩芯样品磨片制样,通过观察硅硼钠石及其中包裹体岩相学特征,再结合包裹体显微测温,得到包裹体均一温度和盐度(w(NaCleq))等多项参数,探讨了硅硼钠石成因以及其对寄主岩石成因的指示意义。结果表明:(1)风城组泥页岩、白云岩和硅质岩中均出现了团块状硅硼钠石和似斑状硅硼钠石,且硅硼钠石中的包裹包括油包裹体和流体包裹体两大类,具体类型为气液两相的油包裹体(O型)、纯液相油包裹体(PO型)、气液两相流体包裹体(W型)、纯液相流体包裹体(PW型);(2)从深部到浅部,团块状硅硼钠石的均一温度峰值范围由108.8~129.4℃变为72.8~89.8℃,似斑状硅硼钠石的均一温度范围由50.4~86.4℃变为54.2~66.4℃;(3)团块状硅硼钠石中W型包裹体盐度为8.41%~18.22%,无明显集中范围;似斑状为6.88%~15.37%,流体在沉积岩形成过程中属于高盐度流体。此次通过对准噶尔盆地风城组硅硼钠石岩相学和包裹体研究,结合前人对研究区风城组硅质岩地球化学研究,综合表明,硅硼钠石寄主岩石属于碱性盐湖背景下,中低温热液流体与碱性盐湖水混合沉积成因。
Abstract:The sodium-rich dolomite and oil shale in the Fengcheng Formation of the Junggar Basin are important oil and gas reservoirs and major source rocks. Correctly understanding the genesis of siliceous boron sodium rocks is of great significance for identifying the origin of sodium-rich dolomite and predicting high-quality dolomite reservoirs. In order to investigate the genesis of the dolomite and siliceous rocks in the Fengcheng Formation, this study selected 60 core samples from the formation and prepared thin sections. By observing the petrographic characteristics of siliceous boron sodium rocks and their fluid inclusions, as well as measuring the homogenization temperature and salinity of the inclusions, the genesis of siliceous boron sodium rocks and their significance for the host rocks are explored. The results show that: (1) blocky and vein-like siliceous boron sodium rocks were found in the mudstone, dolomite, and siliceous rocks of the Fengcheng Formation, with fluid inclusions including oil inclusions and aqueous inclusions of gas-liquid two-phase (O-type), pure liquid (PO-type), gas-liquid two-phase fluid (W-type), and pure liquid fluid (PW-type); (2) the homogenization temperature peak of blocky siliceous boron sodium rocks exhibits a decrease from 108.8~129.4℃ in the deep section to 72.8~89.8℃ in the shallow section, while that of vein-like siliceous boron sodium rocks ranges from 50.4~86.4℃ in the deep section to 54.2~66.4℃ in the shallow section; (3) the salinity of W-type fluid inclusions in blocky siliceous boron sodium rocks varies from 8.41% to 18.22% without a distinct concentration range, while that of vein-like siliceous boron sodium rocks ranges from 6.88% to 15.37%, indicating that the fluids during the sedimentation of the rocks are high salinity fluids. Based on the petrographic and fluid inclusion studies of the siliceous boron sodium rocks in the Fengcheng Formation of the Junggar Basin, along with previous geochemical research on siliceous rocks in the study area, it is concluded that the host rocks of siliceous boron sodium rocks are deposited by the mixing of medium-low temperature hydrothermal fluids with alkaline salt lake water under an alkaline salt lake background.
-
-
表 1 风城组硅硼钠石中的包裹体类型组合及岩石基本特征
Table 1. Sampling depth and host rock types of fluid inclusion samples
井号 样号 深度/m 寄主岩石 硅硼钠石产状 包裹体共生组合 HS1井 HS-6-1 2157.55 泥页岩 团块 O型、PO型、PW型。 HQ6井 HQ6-30-4 2699 云质硅质岩 团块、似斑晶 团块状硅硼钠石:O型、W型和少量PW、PO型;
似斑状硅硼钠石:O型、W型、PW型和少量PO型;
HQ6井O型含量相对较多。HQ6-30-6 白云岩 团块 HQ6-30-7 白云岩 团块 HQ6-30-9 含硅质白云岩 团块 HSX1井 HSX1-1(9) 3308 云质硅质岩 似斑晶 团块状硅硼钠石:W型、O型和少量PW、PO型;
似斑状硅硼钠石:O型、W型、PW型、PO型;
HSX1井O型含量相对降低,偶见W-O型包裹体。HSX1-3(6) 3346.76 含粉砂云质硅质岩 团块 HSX1-3(10) 含粉砂云质硅质岩 似斑晶 HSX1-7(8) 3940.6 云质硅质岩 似斑晶 HSX1-9 硅质岩 似斑晶 表 2 风城组硅硼钠石电子探针成分分析结果(%)
Table 2. Representative EPMA data of reedmergnerite (%)
序号 1 2 3 4 5 6 7 8 9 10 SiO2 65.35 64.76 74.05 74.45 75.43 71.06 69.44 63.52 66.38 70.79 TiO2 — — — — — — 0.01 0.01 — — Al2O3 0.21 0.02 0.02 0.06 — 0.17 0.01 — 0.03 0.07 FeO 0.00 0.05 — — 0.03 0.01 0.01 — 0.02 0.02 MnO 0.00 0.00 — — — — 0.02 0.02 0.01 — MgO 0.04 — — — — 0.01 0.03 0.02 0.02 0.02 CaO 0.08 0.04 — 0.01 — — 0.02 0.07 0.01 — Na2O 3.42 9.85 12.10 10.17 7.74 4.81 4.12 2.20 3.78 7.99 K2O 0.01 0.02 — — — 0.01 — 0.01 0.02 0.02 P2O5 0.02 0.01 — — — 0.04 0.01 — — — B2O3 28.91 22.34 14.65 15.09 13.73 18.00 17.59 25.93 22.38 16.82 SO3 0.01 — — — — — 0.02 0.01 0.01 — Cl — — — — — — — — — — Total 98.05 97.08 100.82 99.78 96.93 94.11 91.27 91.80 92.65 95.73 注:表中的“—”表示测试结果低于检测限。 表 3 流体包裹体显微测温数据统计表
Table 3. Results of homogenization temperature of the inclusions
井号 岩性 硅硼钠石
产状井深/m 包裹体
类型均一温度
/℃冰点/℃ 盐度(w(NaCleq))/% 均一温度直方图
峰值范围/℃HS1 泥岩 团块状 2157.5 O型 42.1~54.7
(均值47.3 n=3)/ / HQ6 云质硅质岩 团块状 2699 O型 58.4~64.8
(均值61.6 n=2)/ 团块状53.1~72.1
(集中于54~60和63~66)
似斑状:33.4~53.4
(集中于42~51)似斑状 41.4~49.1
(均值44.2 n=5)/ 白云岩 团块状 53.1~72.1
(均值60.7 n=11)/ 似斑状 33.5~53.4
(均值43.1 n=27)/ 云质硅质岩 团块状 W型 72.8~88.3
(均值78.8 n=3)-6.9~-5.4
(n=2)8.41~10.36
(n=2)团块状:72.8~89.8℃
(集中于72~81℃和84~90℃)
似斑状:54.2~66.4℃
(集中于57~66℃)似斑状 58.6~65.5
(均值62.1 n=6)-8.4~-0.5
(n=12)6.88~12.16
(n=4)白云岩 团块状 73.4~89.8
(均值81.8 n=7)-14.5~-5.5
(n=4)8.55~18.22
(n=4)似斑状 54.2~66.4
(均值60.7 n=7)-11.4~-8.2
(n=4)11.93~15.37
(n=4)似斑状 PW型 / -10.3~-6.8
(n=4)10.24~14.25
(n=4)HSX1 含粉砂云质硅质岩 团块状 3346 O型 84~113.5
(均值97.9 n=5)/ 团块状:80.2~127.8
(无明显集中范围)
似斑状:36.6~73.8
(无明显集中范围)似斑状 41.3~73.8
(均值57.1 n=4)/ 云质硅质岩 团块状 3940 80.2~127.8
(均值105.6 n=7)/ 似斑状 36.6~66.5
(均值50.7 n=4)/ 云质硅质岩 似斑状 3308 W型 52.7~86.4
(均值68.7 n=7)-15.5 19.05(n=1) 团块状:108.8~129.4
(集中于111~117和120~126)
似斑状:50.4~86.4
(集中于48~57和81~87)含粉砂云质硅质岩 团块状 3346 108.8~129.4
(均值118.3 n=13)/ 似斑状 62.3~81.7
(均值72.0 n=2)/ 云质硅质岩 团块状 3940 116.6~126.9
(均值121.8 n=2)/ 似斑状 50.4~85.5
(均值63.4 n=5)-18.7~-17.6
(n=2)20.67~21.47
(n=2) -
[1] Ataman G, Gündoǧdu N, 1982. Analcimic zones in the tertiary of anatolia and their geological positions[J]. Sedimentary Geology, 31(1982) : 89-99.
[2] Aleksandra Š, Ksenija S, Branimir J, et al. , 2008. Biomarker distributions as indicators for the depositional environment of lacustrine sediments in the Valjevo-Mionica basin (Serbia)[J]. Chemie der Erde - Geochemistry - Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology , 68(4) : 395-411.
[3] Bradley W H, Eugster H P, 1969. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[J]. Professional Paper, 29(3): 369-393.
[4] Bian W H, Jens Hornung, Liu Z H, et al. , 2010. Matthias Hinderer. Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, Northwest China[J]. Palaeobiodiversity and Palaeoenvironments, 90(3): 175-186. doi: 10.1007/s12549-010-0038-9
[5] 曹剑, 雷德文, 李玉文, 等, 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 36(7): 781-790 doi: 10.7623/syxb201507002
Cao J, Lei D W, Li Y W, et al. , 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 36(7): 781-790. doi: 10.7623/syxb201507002
[6] 常海亮, 郑荣才, 郭春利, 等, 2016. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J]. 地质论评, 62(03): 550-568 doi: 10.16509/j.georeview.2016.03.003
Chang H L, Zhen R C, Guo C L, et al. , 2016. REE Geochemical Characteristics of Exhalant Rocks in Fengcheng Formation, Northwestern Margin of Junggar Basin[J]. Geological Review, 62(3): 550-568. doi: 10.16509/j.georeview.2016.03.003
[7] Chen Z H, Zha M, Liu K Y, et al. , 2016. Origin and accumulation mechanisms of petroleum in the Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin, China[J]. Journal of Asian Earth Sciences, 127: 170-196. doi: 10.1016/j.jseaes.2016.06.002
[8] Chen Z H, Wang X L, Zha M, et al. , 2016. Characteristics and formation mechanisms of large volcanic rock oil reservoirs: A case study of the Carboniferous rocks in the Kebai fault zone of Junggar Basin, China[J]. AAPG Bulletin, 100(10) : 1585-1617. doi: 10.1306/04151614066
[9] 陈磊, 丁靖, 潘伟卿, 等, 2012. 准噶尔盆地玛湖凹陷西斜坡二叠系风城组云质岩优质储层特征及控制因素[J]. 中国石油勘探, 17(3): 8-11 doi: 10.3969/j.issn.1672-7703.2012.03.002
Chen L, Ding J, Pan W Q, et al. , 2012. Characteristics and Controlling Factors of High-quality Dolomite Reservoir in Permian Fengcheng Formation in West Slope of Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 17(3): 8-11. doi: 10.3969/j.issn.1672-7703.2012.03.002
[10] Chi G X, Haid T, Quirt D, et al. , 2017. Petrography, fluid inclusion analysis, and geochronology of the end uranium deposit, Kiggavik, Nunavut, Canada[J]. Mineralium Deposita, 52(2): 211-232. doi: 10.1007/s00126-016-0657-9
[11] David S, Steven B, Claire W, et al. , 2009. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California[J]. Applied Clay Science, 47(1-2) : 72-81.
[12] Davis D W, Lowenstein T K, Spencer R J, 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O[J]. Geochimica et Cosmochimica Acta, 54(3): 591-601. doi: 10.1016/0016-7037(90)90355-O
[13] Eugster H P, Smith G I, 1965. Mineral Equilibria in the Searles Lake Evaporites, California[J]. Journal of Petrology, 6(3) : 473-522. doi: 10.1093/petrology/6.3.473
[14] Earman S, Fred M P, Brian J O L, et al. , 2005. The role of “excess” CO2 in the formation of trona deposits[J]. Applied Geochemistry, 20(12) : 2217-2232. doi: 10.1016/j.apgeochem.2005.08.007
[15] 傅饶, 郑荣才, 常海亮, 等, 2015. 湖相“白烟型”喷流岩——新型的致密油储层类型——以准噶尔盆地西缘乌尔禾地区风城组为例[J]. 岩性油气藏, (3): 32−42
Fu R, Zheng R C, Chang H L, et al. , 2015. Lacustrine "white smoke type" exhalative rock——A new type of tight oil reservoir: A case study from Lower Permian Fengcheng Formation in Urho area, western margin of Junggar Basin[J]. Lithologic Reservoirs(3): 32−42.
[16] Garcia-Veigas J, Gündoğan İ, Helvac C, et al. , 2013. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazar trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 294(15): 315-327.
[17] 郭建钢, 赵小莉, 刘巍, 等, 2009. 乌尔禾地区风城组白云岩储集层成因及分布[J]. 新疆石油地质, 30(6): 699-701
Guo J G, Zhao X L, Liu W, et al. , 2009. Origin and Distribution of Dolomite Reservoir of Permian Fengcheng Formation in Wuerhe Area, Junggar Basin[J]. Xinjiang Petroleum Geology, 30(6): 699-701.
[18] 高媛, 王国芝, 李娜, 2019. 准噶尔盆地西北缘二叠系风城组硅质岩地球化学特征及成因[J]. 古地理学报, 21(04): 647-660 doi: 10.7605/gdlxb.2019.04.043
Gao Y, Wang G Z, Li N, 2019. Geochemical features and origin of siliceous rocks of the Permian Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Journal of Palaeogeography(Chinese Edition), 21(4): 647-660. doi: 10.7605/gdlxb.2019.04.043
[19] Hay R L, 1966. Zeolite and zeolitic reactions in sedimentary rocks[J]. Geological Society of America Special Paper, 85: 1-122
[20] Hall D L, Sterner S M, Bodnar R J, 1988. Freezing point depression of NaCl-KCl-H[J]. Economic Geology, 83(1): 197-202. doi: 10.2113/gsecongeo.83.1.197
[21] 冯有良, 张义杰, 王瑞菊, 等, 2011. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J]. 石油勘探与开发, 38(6): 19-22
Feng Y L, Zhang Y J, Wang R J, et al. , 2011. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 38(6): 19-22.
[22] 蒋宜勤, 文华国, 祁利祺, 等, 2012. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物和成因分析[J]. 矿物岩石, 32(2): 105-114 doi: 10.3969/j.issn.1001-6872.2012.02.014
Jiang Y Q, Wen G H, Qi L Q, et al. , 2012. Salt Minerals and Their Genesis Of The Permian Fengcheng Formation In Urho Area, Junggar Basin[J]. Mineralogy and Petrology, 32(2): 105-114. doi: 10.3969/j.issn.1001-6872.2012.02.014
[23] 贾斌, 文华国, 李颖博, 等, 2015. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物流体包裹体特征[J]. 沉积与特提斯地质, 35(1): 33-42 doi: 10.3969/j.issn.1009-3850.2015.01.005
Jia B, Wen H G, Li Y B, et al. , 2015. Fluid inclusions in the salt minerals from the Permian Fengcheng Formation in the Urho region, Junggar Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 35(1): 33-42. doi: 10.3969/j.issn.1009-3850.2015.01.005
[24] 贾斌, 2015. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物特征及成因[D]. 成都理工大学.
Jia B, 2015. Characteristics and Genesis of Salt Minerals in the Permian Fengcheng Formation, Wuerhe Area, Junggar Basin. Chengdu University of Technology [D]. Chengdu University of Technology.
[25] Kathleen C B, Robert H G, 1999. Permian paleoclimate data from fluid inclusions in halite[J]. Chemical Geology, 154: 1-4. doi: 10.1016/S0009-2541(98)00122-3
[26] 匡立春, 唐勇, 雷德文, 等, 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发(6): 657−667
Kuang L C, Tang Y, Lei D W, et al. , 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J].Petroleum Exploration and Development(6): 657−667.
[27] 匡立春, 支东明, 王小军, 等, 2022. 准噶尔盆地上二叠统上乌尔禾组大面积岩性-地层油气藏形成条件及勘探方向[J]. 石油学报, 43(3): 325-340
Kuang L C, Zhi D M, Wang X J, et al. , 2022. Hydrocarbon accumulation conditions and exploration directions of large-scale lithologic-stratigraphic oil and gas reservoirs in Upper Wuerhe Formation of Upper Permian in Junggar Basin[J]. Acta Petrolei Sinica, 43(3): 325-340.
[28] Li J R, Tim K L, Christopher B, Brown T K, et al. , 1996. A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology , 123: 179-203.
[29] Qiu Z, Jiang L, Tao H, 2017. Characteristics of strata and depositional environment of the Permian Lucaogou Formation in Jimusar sag[J]. Scientia Geologica Sinica, 52(3): 964-979.
[30] Robinson W E, 1979. The origin deposition and alteration of the organic material in Green River shale[J]. Organic Geochemistry, 1(4): 205-218. doi: 10.1016/0146-6380(79)90023-8
[31] 卢焕章, 范红瑞, 倪培, 等, 2004. 流体包裹体[M]. 北京: 科学出版社, 1−170
Lu H Z, Fan H R, Ni P, et al. , 2004. Fluid inclusion[M]. Beijing: Science Press, 1−170.
[32] 鲁新川, 张顺存, 史基安, 2012. 准噶尔盆地西北缘乌尔禾-风城地区二叠系风城组白云岩地球化学特征及成因分析[J]. 兰州大学学报(自然科学版), (6): 8-14 doi: 10.3969/j.issn.0455-2059.2012.06.004
Lu X C, Zhang S C, Shi J A, et al. , 2012. Dolomite genesis and geochemical characteristics of permian Fengcheng formation in Wuerhe-Fengcheng area, northwestern Junggar basin[J]. Journal Of Lanzhou University (Natural Sciences), (6): 8-14. doi: 10.3969/j.issn.0455-2059.2012.06.004
[33] 刘英辉, 朱筱敏, 朱茂, 等, 2014. 准噶尔盆地乌—夏地区二叠系风城组致密油储层特征[J]. 岩性油气藏, (4): 66-72 doi: 10.3969/j.issn.1673-8926.2014.04.010
[Liu Y H, Zhu X M, Zhu M, et al. , 2014. Characteristics of tight oil reservoirs of the Permian Fengcheng Formation in Wu-Xia area, Junggar Basin[J]. Lithologic Reservoirs, (4): 66-72. doi: 10.3969/j.issn.1673-8926.2014.04.010
[34] 雷德文, 陈刚强, 刘海磊, 等, 2017. 准噶尔盆地玛湖凹陷大油(气) 区形成条件与勘探方向研究[J]. 地质学报, 91(7): 1604-1619 doi: 10.3969/j.issn.0001-5717.2017.07.012
Lei D W, Chen G Q, Liu H L, et al. , 2017. Study on the Forming Conditions and Exploration Fields of the Mahu Giant Oil (Gas) Province, Junggar Basin[J]. Acta Geologica Sinica, 91(7): 1604-1619. doi: 10.3969/j.issn.0001-5717.2017.07.012
[35] 潘晓添, 2013. 准噶尔盆地西北缘风城组湖相热液白云岩形成机理[D]. 成都理工大学.
Pan X T, 2013. Formation mechanism of lacustrine hydrothermal dolomite in Fengcheng Formation, northwestern margin of Junggar Basin[D]. Chengdu University of Technology.
[36] Renaut R W, Tiercelin J J, Lake Bogoria, 1994. Kenya Rift Valley—A sedimentological overview[M]. Sedimentology and Geochemistry of Modern and Ancient Saline Lakes, 101−124.
[37] Renaut R W, Owen R B, Jones B et al. , 2013. Impact of lake-level changes on the formation of thermogene travertine in continental rifts: Evidence from Lake Bogoria, Kenya Rift Valley[J]. Sedmentology, 60(2): 428-468. doi: 10.1111/j.1365-3091.2012.01347.x
[38] 单祥, 何文军, 郭华军, 等, 2022. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层储集空间与成岩作用[J]. 海相油气地质, 27(3): 325-336 doi: 10.3969/j.issn.1672-9854.2022.03.010
Shan X, He W J, Guo H J, et al. , 2022. Reservoir Space and Diagenesis of Permian Fengcheng Formation Shale Oil Reservoirs in Mahu Depression, Junggar Basin[J]. Marine Origin Petroleum Geology, 27(3): 325-336. doi: 10.3969/j.issn.1672-9854.2022.03.010
[39] Sheila M, Roberts R J S, 1995. Paleotemperatures preserved in fluid inclusions in halite[J]. Geochimica et Cosmochimica Acta, 59(19): 3929-3942. . doi: 10.1016/0016-7037(95)00253-V
[40] Smith G I, Haines D V, 1964. Character and distribution of nonclastic minerals in the Searles Lake evaporite deposit, California[J]. Biochemical Journal, 331(2): 639-648.
[41] Smith G I, 1979. Subsurface stratigraphy and geochemistry of Late Quaternary evaporites, Searles Lake, California[J]. United States Geological Survey Professional Papaer, 1043: 130.
[42] Smith J W, 1983. The chemistry which created Green River Formation oil shale[J]. American Chemical Society. Symposium on Geochemistry and Chemistry of oil shale meeting (Seattle), 28: 76-84.
[43] Smith G I, 2009. Cenozoic geology and lacustrine history of Searles Valley, Inyo and Sand Bernardino Countries, California [J]. American Geophysical Union, (1727): 1-115.
[44] Savage D, Benbow S, Watson C, et al. , 2010. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California[J]. Applied Clay Science, 47: 72-81. doi: 10.1016/j.clay.2009.08.024
[45] 唐勇, 郑孟林, 王霞田, 等, 2022. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 33(05): 677-692
Tang Y, Zheng M L, Wang X T, et al. , 2022. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 33(05): 677-692.
[46] Tomasz T, 2018. Raman spectroscopy of organic, solid and fluid inclusions in the Oldest Halite of LGOM area (SW Poland)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189: 381-392. doi: 10.1016/j.saa.2017.08.024
[47] 王俊怀, 刘英辉, 万策, 等, 2014. 准噶尔盆地乌—夏地区二叠系风城组云质岩特征及成因[J]. 古地理学报, 16(2): 157-168 doi: 10.7605/gdlxb.2014.02.015
Wang J H, Liu Y H, Wan C, et al. , 2014. Characteristics and origin of dolomitic tuff in the Permian Fengcheng Formation in Wu-Xia area of Junggar Basin[J]. Journal of Palaeogeography, 16(2): 157-168. doi: 10.7605/gdlxb.2014.02.015
[48] 汪梦诗, 2017. 玛湖凹陷风城组岩矿类型及其指示意义[J]. 地质论评, 63(S1): 305-306 doi: 10.16509/j.georeview.2017.s1.146
Wang M S, 2017. Minerals of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin and Their Indicating Significance[J]. Geological Review, 63(S1): 305-306. doi: 10.16509/j.georeview.2017.s1.146
[49] 汪梦诗, 张志杰, 周川闽, 等, 2018. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因[J]. 古地理学报, 20(1): 147-162 doi: 10.7605/gdlxb.2018.01.010
Wang M S, Zhang Z J, Zhou C M, et al. , 2018. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography(Chinese Edition), 20(1): 147-162. doi: 10.7605/gdlxb.2018.01.010
[50] 王剑, 周路, 刘金, 等, 2022. 湖相热液白云岩成因机理——以准噶尔盆地玛湖凹陷二叠系风城组为例[J/OL]. 沉积学报: 1−16. DOI: 10.14027/j.issn.1000−0550.2022.037.
Wang J, Zhou L, Liu J, et al., 2022.Genetic Mechanism of Lacustrine Hydrothermal Dolomites: A Case Study of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J/OL]. Acta Sedimentologica Sinica: 1−16.
[51] 王洋, 2018. 准噶尔盆地风城组优质致密云质岩储层形成机理研究[D]. 成都理工大学.
Wang Y, 2018. Research on formation mechanism of tight dolomitic reservoir in Fengcheng Formation, Junggar Basin[D]. Chengdu University of Technology.
[52] William M L, 2002. Mineralogical Analysis of Lake Sediments[J]. Tracking Environmental Change Using Lake Sediments, 2: 143-187.
[53] 薛晶晶, 孙靖, 朱筱敏, 等, 2012. 准噶尔盆地二叠系风城组白云岩储层特征及成因机理分析[J]. 现代地质, 26(4): 755-761 doi: 10.3969/j.issn.1000-8527.2012.04.017
Xue J J, Sun J, Zhu X M, et al. , 2012. Characteristics and Formation Mechanism for Dolomite Reservoir of Permian Fengcheng Formation in Junggar Basin[J]. Geoscience, 26(4): 755-761. doi: 10.3969/j.issn.1000-8527.2012.04.017
[54] Yang W B, Spencer R J, Krouse H, et al. , 1995. Casas E. Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, western China: Hydrology and paleoclimatology in arid environments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 117: (3-4).
[55] Yu K H, Cao Y C, Qiu L W, et al. , 2018. The hydrocarbon generation potential and migration in an alkaline evaporite basin: The Early Permian Fengcheng Formation in the Junggar Basin, northwestern China[J]. Marine and Petroleum Geology, 98: 12-32. doi: 10.1016/j.marpetgeo.2018.08.010
[56] 赵研, 郭佩, 鲁子野, 等, 2020. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨[J]. 沉积学报, 38(5): 966−979
Zhao Y, Guo P, Lu Z Y, et al. , 2020. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China [J]. Acta Sedimentologica Sinica. 38(5): 966−979.
[57] Zhang H, Liu C L, Zhao Y J, et al. , 2015. Quantitative temperature records of mid Cretaceous hothouse: Evidence from halite fluid inclusions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 33-41.
[58] Zhang G Y, Wang Z Z, Guo X G, et al. , 2019. Characteristics of lacustrine dolomitic rock reservoir and accumulation of tight oil in the Permian Fengcheng Formation, the western slope of the Mahu Sag, Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 178: 64-80. doi: 10.1016/j.jseaes.2019.01.002
[59] 张义杰, 曹剑, 胡文瑄, 2010. 准噶尔盆地油气成藏期次确定与成藏组合划分[J]. 石油勘探与开发, 37(03): 257-262 doi: 10.1016/S1876-3804(10)60031-6
Zhang Y J, Cao J, Hu W X, 2010. Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 37(03): 257-262. doi: 10.1016/S1876-3804(10)60031-6
[60] 张杰, 何周, 徐怀宝, 等, 2012. 乌尔禾—风城地区二叠系白云质岩类岩石学特征及成因分析[J]. 沉积学报, 30(5): 859-867 doi: 10.14027/j.cnki.cjxb.2012.05.001
Zhang J, He Z, Xu H B, et al. , 2012. Petrological Characteristics and Origin of Permian Fengcheng Formation Dolomitic Rocks in Wuerhe-Fengcheng Area, Junggar Basin[J]. Acta Sedimentologica Sinica, 30(5): 859-867. doi: 10.14027/j.cnki.cjxb.2012.05.001
[61] 张志杰, 袁选俊, 汪梦诗, 等, 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 45(6): 972-984 doi: 10.11698/PED.2018.06.05
Zhang Z J, Yuan X J, Wang M S, et al. , 2018. Alkaline-lacustrine deposition and Paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 45(6): 972-984. doi: 10.11698/PED.2018.06.05
-