川西德昌馒头山离子吸附型重稀土矿床的发现及其地质意义

郭金承, 聂飞, 吴松洋, 刘洪, 邹佳作, 冉光辉, 雷栋, 来永革. 2024. 川西德昌馒头山离子吸附型重稀土矿床的发现及其地质意义. 沉积与特提斯地质, 44(1): 86-99. doi: 10.19826/j.cnki.1009-3850.2023.10004
引用本文: 郭金承, 聂飞, 吴松洋, 刘洪, 邹佳作, 冉光辉, 雷栋, 来永革. 2024. 川西德昌馒头山离子吸附型重稀土矿床的发现及其地质意义. 沉积与特提斯地质, 44(1): 86-99. doi: 10.19826/j.cnki.1009-3850.2023.10004
GUO Jincheng, NIE Fei, WU Songyang, LIU Hong, ZOU Jiazuo, RAN Guanghui, LEI Dong, LAI Yongge. 2024. The discovery and geological significance of the Mantoushan ion-adsorption type heavy rare earth deposit in Dechang, western Sichuan. Sedimentary Geology and Tethyan Geology, 44(1): 86-99. doi: 10.19826/j.cnki.1009-3850.2023.10004
Citation: GUO Jincheng, NIE Fei, WU Songyang, LIU Hong, ZOU Jiazuo, RAN Guanghui, LEI Dong, LAI Yongge. 2024. The discovery and geological significance of the Mantoushan ion-adsorption type heavy rare earth deposit in Dechang, western Sichuan. Sedimentary Geology and Tethyan Geology, 44(1): 86-99. doi: 10.19826/j.cnki.1009-3850.2023.10004

川西德昌馒头山离子吸附型重稀土矿床的发现及其地质意义

  • 基金项目: 攀西冕宁—德昌地区稀土及多金属矿产地质调查(DD20220965)
详细信息
    作者简介: 郭金承(1995—),工程师,主要从事矿床地质研究与矿产调查评价等工作。E-mail:1525740792@qq.com
    通讯作者: 吴松洋(1989—),高级工程师,博士,从事西南三江和东南亚特提斯构造演化与成矿效应研究。E-mail:songywu@163.com
  • 中图分类号: P618.91

The discovery and geological significance of the Mantoushan ion-adsorption type heavy rare earth deposit in Dechang, western Sichuan

More Information
  • 冕宁—德昌稀土成矿带是我国重要硬岩型稀土资源基地,已发现的稀土资源均与喜马拉雅期形成的碳酸岩-碱性杂岩体有关,作者在该地区开展地质调查时在德昌馒头山新发现了与二叠纪晚期钾长花岗岩相关的离子吸附型稀土矿床,因此,本文通过对德昌馒头山地区开展矿产地质调查,经3个浅钻验证,该地区风化壳厚度最深可达17 m,并根据风化程度将风化壳由地表至基岩,依次划分为腐殖土层、黏土层、全风化层和半风化层,风化壳全相稀土氧化物品位(TREO)变化范围为0.07%~0.19%,平均为0.12%,高于工业品位的0.05%;离子相稀土氧化物(SREO)品位变化范围为0.02%~0.056%,平均为0.03%,高于边界品位的0.02%;重稀土配分范围为50%~72%,平均为62%。稀土品位变化在风化壳剖面呈现出“上低—下高”和“上高—下低”两种类型,全风化层和黏土层是主要赋矿层位。这是首次在冕宁—德昌稀土成矿带发现离子吸附型重稀土矿,具有重大经济价值和科学意义。

  • 加载中
  • 图 1  我国主要稀土成矿带和矿床空间分布图(a)(据王登红等,2013aXie et al., 2019谢玉玲等,2020周美夫等,2020修改);冕宁—德昌稀土成矿带典型矿床分布图(b)(据王登红等,2019b修改);研究区地质简图(c)

    Figure 1. 

    图 2  矿区地貌图(a)和矿区剖面图(b)

    Figure 2. 

    图 3  馒头山风化壳风化剖面(a-e)和矿物含量变化(f)

    Figure 3. 

    图 4  馒头山花岗岩风化壳钻孔1(a)、钻孔2(b)、钻孔3(c)全相稀土氧化物总量(%)、离子相稀土氧化物总量(%)、全相稀土单元素(×10−6)、全相重稀土氧化物和全相轻稀土氧化物配分比(%)变化曲线

    Figure 4. 

    图 5  风化壳样品球粒陨石标准化REE模式图(球粒陨石数据引自Sun and McDonough, 1989

    Figure 5. 

    图 6  稀土配分类型划分投影图(底图引自彭琳琳等,2021

    Figure 6. 

    图 7  馒头山花岗岩风化壳全相稀土氧化物总量(TREO)与δCe相关图解

    Figure 7. 

  • [1]

    柏杨, 邓志祥, 毕晓路, 等, 2021. 云南省澜沧地区风化壳型稀土矿化的新发现及找矿前景[J]. 地质与勘探, 57(4): 762-783

    Bai Y, Deng Z X, Bi X L, et al. , 2021. New Discovery of Rare-Earth Mineralization of the Weathering Crust Type and Ore-Search Prospect in the Lancang Area, Yunnan Province[J]. Geology And Exploration, 57(4): 762-783.

    [2]

    从柏林, 1989. 攀西裂谷形成与演化[M]. 北京: 科学出版社, 1 − 427

    Cong B L, 1989. The formation and evolution of Panzhihua-Xichang Rift[M]. Beijing: Science Press, 1 − 427(in Chinese).

    [3]

    陈德潜, 吴静淑, 1990. 离子吸附型稀土矿床的成矿机制[J]. 中国稀土学报, 8(2): 175-179

    Chen D Q, Wu J S, 1990. Metallogenic mechanism of ion - adsorbed rare earth deposits[J]. Journal of the Chinese Society of Rare Earths, 8(2): 175-179.

    [4]

    Chau N D, Jadwiga P, Adam P, et al. , 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam[J]. Vietnam Journal of Earth Sciences, 39(1): 14-26.

    [5]

    池汝安, 刘雪梅, 2019. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 37(2): 129-140

    Chi R A, Liu X M, 2019. Prospect and development of weathered crust elution-deposited rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 37(2): 129-140.

    [6]

    范国强, 秦宇龙, 詹涵钰, 等, 2022. 四川攀西地区稀土资源成矿规律及找矿靶区[J]. 中国地质调查, 9(1): 23 − 31

    Fan G Q, Qin Y L, Zhan H Y, et al., 2022. Metallization regularity and prospecting target area in Panzhihua-Xichang area of Sichuan Province[J]. Geological Survey Of China, 9(1): 23 − 31(in Chinese with English abstract).

    [7]

    黄典豪, 吴澄宇, 韩久竹, 1989. 江西足洞和关西花岗岩的岩石学、稀土元素地球化学及成岩机制[J]. 地质学报, (2): 139-157

    Huang D H, Wu C Y, Han J Z, 1989. Petrology REE geochemistry and rock-forming mechanism of the Zudong and Guanxi granites, Jiangxi[J]. Acta Geologica Sinica, (2): 139-157.

    [8]

    侯增谦, 卢记仁, 林盛中, 2005. 峨眉地幔柱轴部的榴辉岩-地幔岩源区: 主元素、痕量元素及Sr-Nd-Pb同位素证据[J]. 地质学报, 79(2): 200-219

    Hou Z Q, Lu J R, Lin S Z, 2005. The Axial zone consisting of pyrolite and eclogite in the emei mantle plume: major, trace element and Sr-Nd-Pb isotope evidence[J]. Acta Geologica Sinica, 79(2): 200-219.

    [9]

    侯增谦, 田世洪, 谢玉玲, 等, 2008. 川西冕宁—德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型[J]. 矿床地质, 27(2): 145-176

    Hou Z Q, Tian S H, Xie Y L, et al. , 2008. Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone, southwest China: geological characteristics of REE deposits and a possible metallogenic model[J]. Mineral Deposits, 27(2): 145-176 .

    [10]

    侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 65(3): 3651-3652

    Hou Z Q, Chen J, Zhai M G, 2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 65(3): 3651-3652 .

    [11]

    Hou Z Q, Tian S, Xie Y L, et al. , 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone. SW China[J]. Ore Geology Review, 36: 65-89. doi: 10.1016/j.oregeorev.2009.03.001

    [12]

    Hill S E and Rosenbaum M S, 1998. Assessing the significant factors in a rock weathering system[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 31(2): 85-94. doi: 10.1144/GSL.QJEG.1998.031.P2.02

    [13]

    何一, 孙庆, 陈宇, 2011. 四川德昌安宁河谷风电场风能资源评估[J]. 水电设计, 27(4): 83-86

    He Y, Sun Q, Chen Y, 2011. Wind energy resource assessment of Anning valley wind farm in Dechang, Sichuan [J]. Hydropower Design, 27(4): 83-86 .

    [14]

    胡瑞忠, 温汉捷, 叶淋, 等, 2020. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 65(3): 3700 − 3714

    Hu R Z, Wen H J, Ye L, et al., 2020. Metallogeny of critical metals in the Southwestern Yangtze Block [J]. Chinese Science Bulletin, 65: 3700 − 3714 (in Chinese with English abstract).

    [15]

    何宏平, 杨武斌, 2022. 我国稀土资源现状和评价[J]. 大地构造域成矿学, 46(5): 1-13

    He H P, Yang W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 1-13 .

    [16]

    Imai A, Yonezu K, Sanematsu K, 2012. Rare earth elements in hydrothermally altered granitic rocks in the Ranong and Takua Pa tin-field, Southern Thailand[J]. Resource Geology, 63(1): 84-98.

    [17]

    李立主, 1993. 论攀西地区离子相稀土矿的基本特征及找矿前景[J]. 四川地质学报, 13(1): 41-45

    Li L Z, 1993. On basic characteristics and prospecting potential of ore deposits of ion phase rare-earth elements in Panzhihua-Xichang region[J]. Acta Geologica Sichuan, 13(1): 41-45 .

    [18]

    李立主, 2001. 论攀西地区稀有稀土矿的基本特征及开发前景[J]. 四川地质学报, 2001(3): 150-152

    Li L Z, 2001. Geologic features and exploitation perspective of REE ore deposits in Panzhihua-Xichang region[J]. Acta Geologica Sichuan, 2001(3): 150-152 .

    [19]

    Li M Y H, Zhou M F, 2020. The role of clay minerals in forming the regolith-hosted heavy rare earth element deposits[J]. American Mineralogist, 105: 92-108. doi: 10.2138/am-2020-7061

    [20]

    Li M Y H, Zhou M F, Williams-Jones A E, 2020. Controls on the dynamics of rare earth elements during sub-tropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 115 (5): 1097-1118 doi: 10.5382/econgeo.4727

    [21]

    陆蕾, 王登红, 王成辉, 等, 2020. 云南离子吸附型稀土矿成矿规律[J]. 地质学报, 94(1): 179-191

    Lu L, Wang D H, Wang C H, et al. , 2020. The metallogenic regularity of ion-adsorption type REE deposit in Yunnan Province[J]. Acta Geologica Sinica, 94(1): 179-191.

    [22]

    赖绍聪, 朱毓, 2020. 扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制: 研究进展与展望[J]. 地质力学学报, 26(5): 759-790

    Lai S C, Zhu Y, 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate felsic magmatism in the western margin of the Yangtze Block, South China[J]. Journal of Geomechanics, 26 (5): 759-790.

    [23]

    吕亮, 王思德, 俎波, 等, 2022. 老挝稀土资源特征及勘查开发前景[J]. 地质科技通报, 41(3): 20-31

    Lü L, Wang S D, Zu B, et al. , 2022. Rare earth resources in Laos: Characteristics and the prospects for exploration and development[J]. Bulletin of Geological Science and Technology, 41(3): 20-31.

    [24]

    莫宣学, 路凤香, 沈上越, 等. 1993. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1 − 267.

    Mo X X, Lu F X, Shen S Y, et al., 1993. Volcanic rocks and metallogeny of the Sanjiang region, southwestern China [M]. Beijing: Geological Publishing House (in Chinese).

    [25]

    莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(3): 135-148

    Mo X X, Zhao Z D, Deng J F, et al. , 2003. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers, 10(3): 135-148.

    [26]

    毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产—国际动向与思考[J]. 矿床地质, 38(4): 689-698

    Mao J W, Yang Z X, Xie G Q, et al. , 2019. Critical minerals: International trends and thinking[J]. Mineral Deposits, 38(4): 689-698.

    [27]

    Marsh J S. 1991. REE and fractionation and Ce anomalies in weathering Karoo dolerite[J]. Chemical Geology, 90: 189 − 194.

    [28]

    Maulana A, Yonezu K, Watanabe K, 2014. Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia[J]. Journal of Earth Science, 25: 460-472. doi: 10.1007/s12583-014-0449-z

    [29]

    Maulana A, Sanematsu K, Sakakibara M, 2016. An Overview on the Possibility of Scandium and REE Occurrence in Sulawesi, Indonesia[J]. Indonesian Journal on Geoscience, 3(2): 139-147.

    [30]

    牛贺才, 单强, 陈小明, 等, 2002. 攀西裂谷带轻稀土矿床与地幔过程的关系[J]. 中国科学(D辑), 32(增刊): 33 − 40.

    Niu H C, Shan Q, Chen X M, et al., 2003. Relationship between light rare earth deposits and mantle processes in Panxi rift, China [J]. Science in China (Series D), 46 (Sl): 41 − 49. (in Chinese)

    [31]

    彭琳琳, 陈斌锋, 邹新勇, 等, 2021. 离子型稀土矿稀土配分特征及类型划分新方案[J]. 中国稀土学报, 39(4), 624 − 632

    Peng L L, Chen B F, Zou X Y, et al., 2021. Rare earth partitioning characteristics and new scheme for classification of ion-adsorption type rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 39(4), 624 − 632(in Chinese with English abstract).

    [32]

    潘泽伟, 卢映祥, 罗建宏, 等, 2021. 滇西陇川营盘山离子吸附型稀土矿稀土元素分布特征[J]. 地质与勘探, 57(4): 784-795

    Pan Z W, Lu Y X, Luo J H, et al. , 2021. REE distribution characteristics of the Yingpanshan ion adsorption type rare-earth deposit in the Longchuan area of Western Yunnan[J]. Geology and Exploration, 57(4): 784-795.

    [33]

    潘桂棠, 王立全, 尹福光, 等, 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151-175

    Pan G T, Wang L Q, Yin F G, et al. , 2022. Researches on geological-tectonic evolution of Tibetan plateau: a review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2): 151-175.

    [34]

    秦建华, 刘才泽, 廖震文, 等, 2017. 中国西南地区重要矿产成矿规律[M]. 武汉: 中国地质大学出版社, 69

    Qin J H, Liu C Z, Liao Z W, et al., 2017. Ore-forming regularity of important mineral in Southwest China[M]. Wuhan: China University of Geosciences Press, 69(in Chinese).

    [35]

    Sun S S, McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]. Geological Society, London, Special Publication, 42: 313 − 345.

    [36]

    Sanematsu K, Murakami H, Watanabe Y, et al. , 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos[J]. Bulletin of the Geological Survey of Japan, 60(11/12): 527-558.

    [37]

    Sanematsu K, Moriyama T, Sotouky L et al. , 2011. Mobility of rare warth elements in basalt-derived laterite at the Bolaven Plateau, Southern Laos[J]. . Resource Geology, 61(2): 140-158. doi: 10.1111/j.1751-3928.2011.00155.x

    [38]

    Sanematsu K, Kon Y, Imai A, et al. , 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. . Mineralium Deposita, 48: 437-451. doi: 10.1007/s00126-011-0380-5

    [39]

    Sanematsu K, Kon Y, Imai A, 2015. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand[J]. . Journal of Asian Earth Sciences, 111: 14-30 doi: 10.1016/j.jseaes.2015.05.018

    [40]

    Su N, Yang S, Guo Y, et al, 2017. Revisit of rare earth element fractionation during chemical weathering and river sediment transport[J]. Geochem Geophys, 18: 935-955. doi: 10.1002/2016GC006659

    [41]

    Tian J, Tang X K, Yin J Q, et al. , 2013. Process optimization on leaching of a lean weathered crust elution deposited rare earth ores[J]. . International Journal of Mineral Processing, 119: 83-88. doi: 10.1016/j.minpro.2013.01.004

    [42]

    吴澄宇, 黄典豪, 1990. 南岭花岗岩类起源与稀土元素的分馏[J]. 岩石矿物学杂志, 2: 106-116

    Wu C Y, Huang D H, 1990. Differentiation of rare earth elements and origin of granitic rocks, Nanling mountain area[J]. Acta Petrologica et Mineralogica, 2: 106-116.

    [43]

    吴澄宇, 白鸽, 黄典豪, 等, 1992. 南岭富重稀土花岗岩类的特征和意义[J]. 中国地质科学院院报, 25: 43-58

    Wu C Y, Bai G, Huang D H, et al. , 1992. Characteristics and significance of HREE-rich granitoids of the Nanling mountain area[J]. Bulletin of the Chinese Academy of Geological Sciences, 25: 43-58.

    [44]

    汪正江, 王剑, 杨平, 等, 2011. 上扬子克拉通内新元古代A型花岗岩的发现及其地质意义[J]. 沉积与特提斯地质, 32(2): 1-11

    Wang Z J, Wang J, Yang P, et al. , 2011. The discovery and geological implications of the Neoproterozoic A-type granites in the upper Yangtze craton[J]. Sedimentary Geology and Tethyan Geology, 32(2): 1-11.

    [45]

    王登红, 赵芝, 于扬, 等, 2013a. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 32(5): 796-802

    Wang D H, Zhao Z, Yu Y, et al. , 2013a. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 32(5): 796-802.

    [46]

    王登红, 王瑞江, 李建康, 等, 2013b. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 40(2): 361-370

    Wang D H, Wang R J, Li J K et al. , 2013b. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J]. Geology in China, 4(2): 361-370.

    [47]

    王登红, 赵芝, 于扬, 等, 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展[J]. 地球学报, 38(3): 317-325

    Wang D H, Zhao Z, Yu Y, et al. , 2017. A Review of the achievements in the survey and study of ion-absorption type REE deposits in China[J]. Acta Geoscientica Sinica, 38(3): 317-325.

    [48]

    王登红, 2019a. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189-1209

    Wang D H, 2019a. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 93(6): 1189-1209.

    [49]

    王登红, 刘善宝, 于扬, 等, 2019b. 川西大型战略性新兴产业矿产基地勘查进展及其开发利用研究[J]. 地质学报, 93(6): 1444 − 1453

    Wang D H, Liu S B, Yu Y, et al., 2019b. Exploration progress and development suggestion for the large-scale mining base of strategic critical mineral resources in western Sichuan [J]. Acta Geologica Sinica. 93(6): 1444 − 1453(in Chinese with English abstract).

    [50]

    王学求, 周建, 迟清华, 等, 2020. 中国稀土元素地球化学背景与远景区优选[J]. 地球学报, 41(6): 747-758 doi: 10.3975/cagsb.2020.102802

    Wang X Q, Zhou J, Chi Q H, et al. , 2020. Geochemical background and distribution of rare earth elements in China: implications for potential prospects[J]. Acta Geoscientica Sinica, 41(6): 747-758. doi: 10.3975/cagsb.2020.102802

    [51]

    王学求, 周建, 张必敏, 等, 2022. 云南红河州超大规模离子吸附型稀土矿的发现及其意义[J]. 地球学报, 43(4): 509-519

    Wang X Q, Zhou J, Zhang B M, et al. , 2022. Finding and implication of an undiscovered giant deposit of ion-adsorption rare earth elements in Honghe, South Yunnan, China[J]. Acta Geoscientica Sinica, 43(4): 509-519.

    [52]

    王长兵, 倪光清, 瞿亮, 等, 2021. 花岗岩风化壳中Ce地球化学特征及其找矿意义[J]. 矿床地质, 40(5): 1013-1028

    Wang C B, Ni G Q, Qu L, et al. , 2021. Ce geochemical characteristics of granite weathering crust and its prospecting significance[J]. Mineral Deposits, 40(5): 1013-1028.

    [53]

    伍普球, 周靖雯, 黄健, 等, 2022. 离子吸附型稀土矿床中稀土的富集–分异特征: 铁氧化物–黏土矿物复合体的约束[J]. 地球化学, 51(3): 271 − 282.

    Wu P Q, Zhou J W, Huang J, et al., 2022. Enrichment and fractionation of rare earth elements in ion-adsorption rare earth elements deposits: Constraints of iron oxide-clay mineral composites[J]. Geochimica, 51(3): 271 − 2828(in Chinese with English abstract).

    [54]

    Wang Y J, Fan W M, Zhang G W, et al. , 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Res, 23: 1273-1305. doi: 10.1016/j.gr.2012.02.019

    [55]

    肖剑, 王勇, 洪应龙, 等, 2009. 西华山钨矿花岗岩地球化学特征及与钨成矿的关系[J]. 华东理工大学学报(自然科学版), 32(1): 22-31

    Xiao J, Wang Y, Hong Y L, et al. , 2009. Geochemistry characteristics of Xihuashan tungsten granite and its relationship to tungsten metallogenesis[J]. Journal of east China institute of technology, 32(1): 22-31.

    [56]

    Xie Y L, Verplanck P, Hou Z Q, et al. , 2019. Rare earth element deposits in China: A review and some new understanding[J]. Society of Economic Geologists Special Publication, 22: 509-552.

    [57]

    谢玉玲, 夏加明, 崔凯, 等, 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程[J]. 科学通报, 65(33): 3794 − 3808

    Xie Y L, Xia J M, Cui K, et al., 2020. Rare earth elements deposits in China: spatiotemporal distribution and ore-forming processes [J]. Chinese Science Bulletin, 65(33): 3794 − 3808(in Chinese with English abstract).

    [58]

    夏小洪, 刘图强, 尹川, 等, 2022. 四川攀枝花—西昌地区离子吸附型(中-重)稀土矿床的首次发现及其重要意义[J]. 地质论评, 68(4): 1540-1543

    Xia X H, Liu T Q, Yin C, et al. , 2022. First discovery of ion adsorption-type (medium—heavy) REE deposit in the Panzhihua-Xichang area, Sichuan province, and its significance[J]. Geological Review, 68(4): 1540-1543.

    [59]

    杨瑞瑛, 黄忠祥, 李继亮, 1988. 攀西地区花岗岩类的微量元素地球化学[J]. 中国科学(B辑), 2: 183-192

    Yang R Y, Huang Z X, Li J L, 1988. Trace element geochemistry of granitoid in Panxi area[J]. Science in China, Ser. B, 2: 183-192.

    [60]

    尹福光, 王冬兵, 孙志明, 等. 2012. 哥伦比亚超大陆在扬子陆块西缘的探秘[J]. 沉积与特提斯地质, 32(3): 31 − 40

    Yin F G, Wang D B, Sun Z M, et al., 2012. Columbia supercontinent: new insights from the western margin of the Yangtze landmass[J]. Sedimentary Geology and Tethyan Geology, 32(3): 31 − 40(in Chinese with English abstract).

    [61]

    鄢俊彪, 吴开兴, 刘辉, 等, 2018. 离子型稀土矿石颗粒粒度分布型式及其成因研究——以江西赣县大埠稀土矿床为例[J]. 中国稀土学报, 36(3), 372 − 384

    Yan J B, Wu K X, Liu H, et al., 2018. Patterns of particle size distribution and genesis of ion-adsorption REE ore-exemplified by Dabu REE ore deposit, Ganxian county, Southern Jiangxi province[J]. Journal of the Chinese Society of Rare earths, 36(3), 372 − 384(in Chinese with English abstract).

    [62]

    燕利军, 陈永清, 邓志祥, 等, 2020. 云南盈江地区风化壳型稀土矿特征及找矿方向[J]. 地质与勘探, 56(2): 288-301 doi: 10.12134/j.dzykt.2020.02.005

    Yan L J, Chen Y Q, Deng Z X, et al. , 2020. Features of weathered crust rare earth ores and prospecting direction in the Yingjiang area, Yunnan province[J]. Geology and Exploration, 56(2): 288-301. doi: 10.12134/j.dzykt.2020.02.005

    [63]

    尹淑萍, 谢玉玲, 梁亚运, 2021. 碳酸岩岩浆演化过程中REE富集与分异的研究进展及碳酸岩中的矿物学分带[J]. 矿床地质, 40(5): 949-962

    Yin S P, Xie Y L, Liang Y Y, 2021. A review of REE enrichment and fractionation mechanism during magma evolution of ore-forming carbonatite and significance of mineral zonation in carbonatite[J]. Mineral Deposits, 40(5): 949-962.

    [64]

    Yang Y H, Wu F Y, Li Q L, et al. , 2019. In situ U-Th-Pb dating and Sr-Nd isotope analysis of Bastnsite by LA-(MC)-ICP-MS[J]. Geostandards and Geoanalytical Research, 43: 543-565. doi: 10.1111/ggr.12297

    [65]

    赵芝, 王登红, 陈振宇, 等, 2014. 南岭东段与稀土矿有关岩浆岩的成矿专属性特征[J]. 大地构造与成矿学, 38(2): 255-263

    Zhao Z, Wang D H, Chen Z Y, et al. , 2014. Metallogenic specialization of rare earth mineralized igneous rocks in the eastern Nanling region[J]. Geotectonica et Metallogenia, 38(2): 255-263.

    [66]

    赵芝, 王登红, 邹新勇, 2022. “寨背式”离子吸附型稀土矿床多类型稀土矿化及其成因[J]. 岩石学报, 2022, 38(2): 356 − 370

    Zhao Z, Wang D H, Zou X Y. 2022. The genesis and diversity of ion adsorption REE mineralization in the Zhaibei deposit, Jiangxi province, South China[J]. Acta Petrologica Sinica, 38(2): 356 − 370(in Chinese with English abstract).

    [67]

    朱云波, 余斌, 王治兵, 等, 2015. 四川德昌茨达“8.24”群发性滑坡型泥石流质地形条件[J]. 山地学报, 33(1): 108-115

    Zhu Y B, Yu B, Wang Z B, et al. , 2015. Topographic research of group-occurring landslide-induced debris flow in Dechang, Sichuan[J]. Mountain Research, 33(1): 108-115.

    [68]

    钟祥熙, 2016. 不同风化程度离子吸附型稀土矿赋存特征及浸出规律研究[D]. 赣州: 江西理工大学, 4 − 5

    Zhong X X, 2016. Occurrence characteristics and leaching rules of different weathering rare earth ores[D]. Ganzhou: Jiangxi University of Science and Technology, 4 − 5(in Chinese with English abstract).

    [69]

    张民, 李杨, 何显川, 等, 2018. 滇西临沧花岗岩中段离子吸附型稀土矿成矿特征研究[J]. 沉积与特提斯地质, 38(4): 37-47

    Zhang M, Li Y, He X C, et al. , 2018. Mineralization of the ion adsorption-type REE deposits in the central part of the Lincang granites in western Yunnan[J]. Sedimentary Geology and Tethyan Geology, 38(4): 37-47.

    [70]

    张彬, 马国桃, 高儒东, 等, 2018. 滇西腾冲-梁河地区土官寨离子吸附型稀土矿床形成条件及找矿预测[J]. 地球科学, 43(8): 2628-2637

    Zhang B, Ma G T, Gao R D, et al. , 2018. Formation conditions and prospecting prediction of Tuguanzhai ion-adsorption type REE deposit in Tengchong-Lianghe area[J]. Earth Science, 43(8): 2628-2637.

    [71]

    张彬, 祝向平, 张斌辉, 等, 2019. 云南腾冲土官寨离子吸附型稀土矿床地球化学特征[J]. 中国稀土学报, 37(4): 491 − 506

    Zhang B, Zhu X P, Zhang B H, et al., 2019. Geochemical characteristics of Tuguanzhai ion-adsorption type REE deposit in Tengchong, Yunnan[J]. Journal of the Chinese society of rare earths, 37(4): 491 − 506(in Chinese with English abstract).

    [72]

    张民, 何显川, 谭伟, 等, 2022. 云南临沧花岗岩离子吸附型稀土矿床地球化学特征及其成因讨论[J]. 中国地质, 49(1): 201-214

    Zhang M, He X C, Tan W, et al. , 2022. Geochemical characteristics and genesis of ion-adsorption type REE deposit in the Lincang granite, Yunnan province[J]. Geology In China, 49(1): 201-214.

    [73]

    赵延朋, 卢见昆, 杨人毅, 等, 2019. 老挝XK离子吸附型稀土矿床斑状二长花岗岩地球化学特征及地质意义[J]. 地球学报, 33(2): 213-219

    Zhao Y P, Lu J K, Yang R Y, et al. , 2019. Geochemical characteristics and geological significance of porphyritic monzonitic granites from XK ion-adsorbed rare earth deposits in Laos[J]. Mineral Resources and Geology, 33(2): 213-219.

    [74]

    曾凯, 李郎田, 祝向平, 等, 2019. 滇西勐往-曼卖地区离子吸附型稀土矿成矿规律与找矿潜力[J]. 地质与勘探, 55(1): 19-29 doi: 10.12134/j.dzykt.2019.01.002

    Zeng K, Li L T, Zhu X P, et al. , 2019. The metallogenic regularity and prospecting potential of rare-earth deposits of ion-adsorbent type in the Mengwang-Manmai area, western Yunnan[J]. Geology and Exploration, 55(1): 19-29. doi: 10.12134/j.dzykt.2019.01.002

    [75]

    周美夫, 李欣禧, 王振朝, 等, 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报, 65(33): 3809-3824 doi: 10.1360/TB-2020-0350

    Zhou M F, Li X X, Wang Z C, et al. , 2020. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting[J]. Chinese Science Bulletin, 65(33): 3809-3824. doi: 10.1360/TB-2020-0350

    [76]

    Zhao X F, Zhou M F, 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province[J]. Mineralium Deposita, 46: 731-747. doi: 10.1007/s00126-011-0342-y

    [77]

    邹佳作, 聂飞, 郭金承, 2022. 四川冕宁—德昌地区发现离子吸附型稀土矿点[J]. 中国地质, 50(2): 648-649

    Zou J Z, Nie F, Guo J C, 2022. New discovery of ion-absorption type REE mineral occurrence in the Mianning-Dechang area, Sichuan Province[J]. Geology in China, 50(2): 648-649.

  • 加载中

(7)

计量
  • 文章访问数:  1742
  • PDF下载数:  410
  • 施引文献:  0
出版历程
收稿日期:  2022-09-08
修回日期:  2023-06-03
录用日期:  2023-06-21
刊出日期:  2024-03-31

目录