Carbon and oxygen isotopic composition and palaeoenvironment characteristics of Eocene–Miocene lacustrine carbonate rocks in the Tuotuohe Basin, Qingzang (Tibet) Plateau
-
摘要:
沱沱河盆地位于青藏高原腹地,是感应高原隆升过程及环境变化效应的核心地带,其内部新生代沉积地层记录了高原地形地貌演化过程及环境、气候变迁的信息。原生湖相碳酸盐岩沉积与区域环境变化关系密切,它的碳氧同位素特征及组合是研究古环境和古气候变化的重要指标。在青藏高原北部沱沱河盆地新生代湖相碳酸盐岩岩石学和矿物学分析基础上,开展了碳氧同位素特征研究,并探讨了古环境意义。结果表明:沱沱河盆地新生代湖相碳酸盐岩主要为泥微晶灰岩,以及少量白云岩和含生物碎屑泥晶灰岩,垂向上,碳氧同位素组成特征揭示该区古环境存在四个演化阶段:第一阶段对应于38.5~30.5 Ma时期,该时期湖相碳酸盐岩形成于气候相对湿润的开放型湖泊,是冲积扇—河流相干旱气候背景下短暂性雨水输入至洪泛平原内部湖盆所致;第二阶段对应于30.5~23.6 Ma,且该阶段26.5 Ma前后的古环境存在明显变化,30.5~26.5 Ma时期,气候相对湿润,但区域降水量减少,蒸发作用加强,与高原北部局部隆升及湖盆水文状态发生改变有关,26.5~23.6 Ma时期蒸发作用相对增加,气候干冷,是青藏高原北部地区地貌格局发生转变、西风带降水输入减少所致;第三阶段(23.6~22.3 Ma)盆地蒸发作用相对降低,气候相对湿润,与青藏高原腹地发育古大湖有关;第四阶段(22.3~19.7 Ma)气候更加干冷,湖泊类型转变为封闭型咸水湖,为可可西里地区进入高原系统和亚洲内陆干旱化导致。沱沱河盆地始新世—中新世湖相碳酸盐岩碳氧同位素所揭示的湖泊水文状态和气候背景的转变与高原北部古地理格局和地貌演化存在极大关联。
Abstract:The Tuotuohe Basin, located in the Qingzang (Tibet) Plateau, is one of the core areas that attested to predominant environmental changes during the plateau's uplift. The Cenozoic sedimentary successions in this region record the evolution of the plateau's topography and geomorphology, as well as regional climatic changes. Based on the petrological and mineralogical analysis of Cenozoic lacustrine carbonate rocks in the Tuotuohe Basin, the characteristics of carbon and oxygen isotopes are studied to explore their paleoenvironmental significance. The results show that the Cenozoic lacustrine carbonate rocks in the Tuotuohe Basin are dominated by micritic limestone, with a small amount of dolomite and bioclastic limestone. The vertical carbon and oxygen isotopic compositions reveal four stages of paleoenvironmental evolution in this area: The first stage corresponds to the period of 38.5-30.5 Ma, when lacustrine carbonate rocks formed in an open lake during a relatively humid climate, likely influenced by increased rainwater input to the lake basin in a flood plain setting under the background of alluvial fan-fluvial drought climate. The second stage is from 30.5 Ma to 23.6 Ma, during which there were significant changes in the paleoenvironment around 26.5 Ma. From 30.5 Ma to 26.5 Ma, the climate was relatively humid, but regional precipitation decreased, and evaporation intensified, related to the local uplift in the northern part of the plateau and changes in the lake basin's hydrological status. From 26.5 Ma to 23.6 Ma, increased evaporation and a dry, cold climate resulted from the change of geomorphic framework in the northern Qingzang (Tibet) Plateau and the reduced westerly rain input. The third stage is between 23.6 Ma and 22.3 Ma, when evaporation decreased, and the climate became relatively humid, related to the development of ancient lakes in the hinterland of the Qingzang (Tibet) Plateau. In the fourth stage (22.3 Ma-19.7 Ma), the climate became drier and colder, and the lake transitioned to a closed saltwater lake, caused by the integration of Hoh Xil into the plateau system and the drying of the interior of Asia. The changes in lake hydrology and climate, revealed by the carbon and oxygen isotopes of the Eocene–Miocene lacustrine carbonate rocks in the Tuotuohe Basin, are closely related to the paleogeographic pattern and geomorphologic evolution in the northern part of the plateau.
-
-
图 2 沱沱河盆地阿布日阿加宰实测地层剖面特征及地层时代(据Li et al.,2023修改)
Figure 2.
图 6 研究区碳酸盐岩与现代封闭型湖泊和开放型湖泊沉积碳酸盐岩δ13C和δ18O值比较(数据引用自Talbot,1990;Talbot et al.,1990)
Figure 6.
表 1 沱沱河盆地阿布日阿加宰剖面湖相碳酸盐矿物相对百分含量及碳氧同位素分析结果
Table 1. Relative percentages of carbonate minerals and carbon and oxygen isotope values of lacustrine carbonate rocks in the APC section of the Tuotuohe Basin
注:表中样品号带“*”的,表示重复测试样品,“*”个数代表重复测试次数;δ18O带“▲”的,表示校正后的δ18O值。 表 2 剖面古土壤结核与西风带气候区碳酸盐岩样品碳氧同位素值对比
Table 2. Comparison of carbon and oxygen isotope values between paleosol nodules in APC section and carbonate samples in the westerlies-dominated climate
-
[1] An Z S,John E K,Warren L P,et al.,2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature,411(6833):62.
[2] 包万铖,夏国清,路畅,等,2023. 西藏伦坡拉盆地牛堡组二段晚始新世—早渐新世地球化学特征与古气候意义[J]. 沉积与特提斯地质,43(3):580 − 591.
Bao W C,Xia G Q,Lu C,et al.,2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,43(3):580 − 591 (in Chinese with English abstract).
[3] Blayney T,Najman Y,Dupont‐Nivet G,et al.,2016. Indentation of the Pamirs with respect to the northern margin of Tibet:Constraints from the Tarim basin sedimentary record[J]. Tectonics,35(10):2345 − 2369.
[4] 蔡雄飞,刘德民,魏启荣,等,2008. 古新世—中新世以来青藏高原北缘隆升的特征——来自可可西里盆地的报告[J]. 地质学报,28(2):194 − 203+291 − 292. doi: 10.3321/j.issn:0001-5717.2008.02.006
Cai X F,Liu D M,Wei Q R,et al.,2008. Characteristics of North of Tibetap Plateau uplift at Paleocene-Miocene—The evidence from Ke Kexili Basin[J]. Acta Geologica Sinica,28(2):194 − 203+291 − 292 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.02.006
[5] 曹高社,余爽杰,孙凤余,等,2019. 豫西宜阳地区三叠纪早期孙家沟组上段湖相碳酸盐岩碳氧同位素和古环境分析[J]. 地质学报,93(5):1137 − 1153. doi: 10.3969/j.issn.0001-5717.2019.05.011
Cao G S,Yu S J,Sun F Y,et al.,2019. Carbon and oxygen isotopic composition and palaeoenvironment analysis of lacustrine carbonate rocks in the upper member of Early Triassic Sunjiagou Formation,Yiyang area,western Henan Province[J]. Acta Geologica Sinica,93(5):1137 − 1153 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.05.011
[6] Caves J K,Winnick M J,Graham S A,et al.,2015. Role of the westerlies in Central Asia climate over the Cenozoic[J]. Earth and Planetary Science Letters,428:33 − 43. doi: 10.1016/j.jpgl.2015.07.023
[7] Cui J W,Li Z H,Dong X P,et al.,2023. Paleogene-Neogene environmental evolution and the uplift-sedimentation response of the NE Tibetan Plateau[J]. Terra Nova,36(2):112 − 125.
[8] Cyr A J,Currie B S,Rowley D B,2006. Geochemical evaluation of Fenghuoshan group lacustrine carbonates,north-central Tibet:Implications for the paleoaltimetry of the Eocene Tibetan Plateau[J]. Journal of Geology,113(5):517 − 533.
[9] Dai J G,Zhao X X,Wang C S,et al.,2012. The vast proto-Tibetan Plateau:New constraints from Paleogene Hoh Xil Basin(Article)[J]. Gondwana Research,22(2):434 − 446. doi: 10.1016/j.gr.2011.08.019
[10] Dai S,Fang X M,Dupont‐Nivet G,et al.,2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin:Tectonic implications for the northeastern Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth,111(B11).
[11] 邓文峰,韦刚健,李献华,2005. 不纯碳酸盐碳氧同位素组成的在线分析[J]. 地球化学,34(5):495 − 500.
Deng W F,Wei G J,Li X H,2005. Online analysis of carbon and oxygen isotopic compositions of impure carbonate[J]. Geochimica,34(5):495 − 500 (in Chinese with English abstract).
[12] Ding L,Xu Q,Yue Y H,et al.,2014. The Andean-type Gangdese Mountains:Paleoelevation record from the Paleocene–Eocene Linzhou Basin[J]. Earth and Planetary Science Letters,392:250 − 264. doi: 10.1016/j.jpgl.2014.01.045
[13] 段其发,张克信,王建雄,等,2008. 唐古拉山地区渐新世孢粉植物群及其古植被、古气候[J]. 微体古生物学报,25(2):185 − 195. doi: 10.3969/j.issn.1000-0674.2008.02.006
Duan Q F,Zhang K X,Wang J X,et al.,2008. Oligocene palynoflora,paleovegetation and paleoclimate in the Tanggula mountains,Northern Tibet[J]. Acta Micropalaeontologica Sinica,25(2):185 − 195 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2008.02.006
[14] 段志明,李勇,沈战武,等,2007. 青藏高原腹地温泉地区新生代生态环境演化与高原表面隆升过程分析[J]. 中国地质,34(4):688 − 696. doi: 10.3969/j.issn.1000-3657.2007.04.019
Duan Z M,Li Y,Shen Z W,et al.,2007. Analysis of the evolution of the Cenozoic ecological environment and process of plateau surface uplift in the Wenquan area in the interior of the Qinghai- Tibet Plateau[J]. Geology In China,34(4):688 − 696 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2007.04.019
[15] Fang X M,Fang Y H,Zan J B,et al.,2019. Cenozoic magnetostratigraphy of the Xining Basin,NE Tibetan Plateau,and its constraints on paleontological,sedimentological and tectonomorphological evolution[J]. Earth-Science Reviews,190:460 − 485.
[16] Fang X M,Guo Z T,Jiang D B,et al.,2022. No monsoon-dominated climate in northern subtropical Asia before 35 Ma [J]. Global and Planetary Change,218: 103970.
[17] Fang X M,Zan J B,Appel E,et al.,2015. An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin,NW China:Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift[J]. Geophysical Journal International,201(1):78 − 89.
[18] Fontes J C,Gasse F,Gibert E,1996. Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1:Chronology and stable isotopes of carbonates of a Holocene lacustrine core[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,120(1 − 2):25 − 47.
[19] Friedman I,O'neil J R,1977. Compilation of stable isotope fractionation factors of geochemical interest [R]. U.S. Geological Survey Professional Paper:1 − 55.
[20] Graham S A,Chamberlain C P,Yue Y,et al.,2005. Stable isotope records of Cenozoic climate and topography,Tibetan Plateau and Tarim Basin[J]. American Journal of Science,305(2):101 − 118.
[21] Guo Z T,William F R,Hao Q Z,et al.,2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,416(6877):159. doi: 10.1038/416159a
[22] Han W X,Fang X M,Ye C C,et al.,2014. Tibet forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: Carbonate isotope records from deep drilling in the Qaidam salt playa,NE Tibet[J]. Global and Planetary Change,116:68 − 75. doi: 10.1016/j.gloplacha.2014.02.006
[23] He P J,Song C H,Wang Y D,et al.,2021. Early Cenozoic activated deformation in the Qilian Shan,northeastern Tibetan Plateau:Insights from detrital apatite fission‐track analysis[J]. Basin Research,33(3):1731 − 1748. doi: 10.1111/bre.12533
[24] Hock R,Bliss A,Marzeion B,et al.,2019. GlacierMIP–A model intercomparison of global-scale glacier mass-balance models and projections[J]. Journal of Glaciology,65(251):453 − 467.
[25] Hoefs J,1997. Stable isotope geochemistry [M]. Göttingen:Springer.
[26] Horton T W,Defliese W F,Tripati A K,et al.,2016. Evaporation induced 18O and 13C enrichment in lake systems:A global perspective on hydrologic balance effects[J]. Quaternary Science Reviews,131:365 − 379. doi: 10.1016/j.quascirev.2015.06.030
[27] Hough B G,Garzione C N,Wang Z,et al.,2010. Stable isotope evidence for topographic growth and basin segmentation:Implications for the evolution of the NE Tibetan Plateau[J]. Geological Society of America Bulletin,123(1 − 2):168 − 185.
[28] Jia Y X,Wu H B,Zhu S Y,et al.,2020. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,557:109907.
[29] Jian X,Guan P,Zhang W,et al.,2018. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau:Detrital apatite fission track evidence from northern Qaidam Basin[J]. Gondwana Research,60:94 − 104. doi: 10.1016/j.gr.2018.04.007
[30] Kämpf L,Plessen B,Lauterbach S,et al.,2020. Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy[J]. Geology,48(1):3 − 7. doi: 10.1130/G46593.1
[31] Kent-Corson M L,Ritts B D,Zhuang G,et al.,2009. Stable isotopic constraints on the tectonic,topographic,and climatic evolution of the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters,282(1 − 4):158 − 166.
[32] Leng M J,Marshall J D,2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews,23(7 − 8):811 − 831.
[33] Li C P,Zheng D W,Yu J X,et al.,2023. Late Oligocene mountain building of the East Kunlun Shan in northeastern Tibet:Impact on the Cenozoic climate evolution in East Asia [J]. Global and Planetary Change,224:104114.
[34] 李吉均,1999. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质(1):7 − 17.
Li J J,1999. Studies on the geomorphological evolution of the Qinghai-Xizang(Tibetan) Plateau and Asian monsoon[J]. Marine geology & Quaternary Geology(1):7 − 17 (in Chinese with English abstract).
[35] 李建国,2015. 可可西里新生代雅西措组和五道梁组孢粉组合浅探[J]. 第四纪研究,35(3):787 − 790.
Li J G,2015. A Primary Investigation on the Palynoassemblages of the Cenozoic Yaxico and Wudaoliang Formations,Hoh Xil[J]. Quaternary Sciences,35(3):787 − 790 (in Chinese with English abstract).
[36] 李乐意,2019. 青藏高原沱沱河盆地晚始新世——早中新世古环境记录及对高原中北部隆升历史的指示意义 [D]. 北京:中国科学院大学.
Li L Y,2019. Late Eocene-early Miocene paleoenvironment evolution of the Tuotuohe Basin and its tectonic uplift implications for the central-northern Tibetan Plateau [D]. Beijing:University of Chinese Academy of Sciences (in Chinese with English abstract).
[37] 李乐意,常宏,关冲,2022. 青藏高原中北部沱沱河盆地新生代古纬度演化及其对构造和气候的指示意义[J]. 地质论评,68(5):1801 − 1817.
Li L Y,Chang H,Guan C,2022. Paleolatitude evolution of the Tuotuohe Basin,central northern Xizang(Tibet) during the Cenozoic and its tectonic,climate implications[J]. Geological Review,68(5):1801 − 1817 (in Chinese with English abstract).
[38] Li L Y,Chang H,Farnsworth A,et al.,2023a. Revised chronology of the middle−upper Cenozoic succession in the Tuotuohe Basin,central-northern Tibetan Plateau,and its paleoelevation implications[J]. Geological Society of America Bulletin,136(5 − 6):2359 − 2372.
[39] Li L Y,Chang H,Li X Z,et al.,2023b. Magnetostratigraphy of the Tuotuohe Formation in the Tuotuohe Basin,central-northern Tibetan Plateau:Paleolatitude and paleoenvironmental implications[J]. Minerals,13(4):553. doi: 10.3390/min13040553
[40] Li L,Fan M J,Davila N,et al.,2018. Carbonate stable and clumped isotopic evidence for late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications[J]. Geological Society of America Bulletin,131(5 − 6):831 − 844.
[41] Li L,Garzione C N,2017. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau:Implications for paleoelevation reconstruction[J]. Earth and Planetary Science Letters,460:302 − 314.
[42] Li L,Garzione C N,2023. Upward and outward growth of north-central Tibet:Mechanisms that build high-elevation,low-relief plateaus [J]. Science Advances,9 (27):3058.
[43] Li Y L,Wang C S,Zhao X X,et al.,2012. Cenozoic thrust system,basin evolution,and uplift of the Tanggula Range in the Tuotuohe region,central Tibet[J]. Gondwana Research,22(2):482 − 492. doi: 10.1016/j.gr.2011.11.017
[44] Li Y L,Wu F R,Liu D J,et al.,2014. Distribution pattern and exploration prospect of Longwangmiao Fm reservoirs in the Leshan-Longnüsi Paleouplift,Sichuan Basin[J]. Natural Gas Industry,1(1):72 − 77. doi: 10.1016/j.ngib.2014.10.009
[45] 刘东生,郑绵平,郭正堂,1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,18(3):194 − 204.
Liu D S,Zheng M P,Guo Z T,1998. The origin and development of the Asian monsoon system and its epochal coupling with polar ice sheets and regional tectonic movements[J]. Quaternary Sciences,18(3):194 − 204 (in Chinese with English abstract).
[46] Liu Y D,Yang Y B,Ye C C,et al.,2021. Global change modulated Asian inland climate since 7.3 Ma:Carbonate manganese records in the western Qaidam Basin [J]. Frontiers in Earth Science,9:813727.
[47] 刘志飞,王成善,金玮,等,2005. 青藏高原沱沱河盆地渐新—中新世沉积环境分析[J]. 沉积学报,23(2):210 − 217. doi: 10.3969/j.issn.1000-0550.2005.02.004
Liu Z F,Wang C S,Jin W,et al.,2005. Oligo-Miocene Depositional Environment of the Tuotuohe Basin,Central Tibetan Plateau[J]. Acta Sedmentologica Sinica,23(2):210 − 217 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2005.02.004
[48] 刘志飞,王成善,伊海生,等,2001. 可可西里盆地新生代沉积演化历史重建[J]. 地质学报,75(2):250 − 258. doi: 10.3321/j.issn:0001-5717.2001.02.015
Liu Z F,Wang C S,Yi H S,et al.,2001. Reconstruction of Depositional History of the Cenozoic Hoh Xil Basin[J]. Acta Geologica Sinica,75(2):250 − 258 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.02.015
[49] 路畅,夏国清,陈云,等,2023. 西藏伦坡拉盆地晚始新世—早渐新世黏土矿物特征及古气候意义[J]. 沉积与特提斯地质,43(3):565 − 579.
Lu C,Xia G Q,Chen Y,et al.,2023. Late Eocene-Early Oligocene clay mineral characteristics and paleoclimate significance in Lunpola Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,43(3):565 − 579 (in Chinese with English abstract).
[50] Miao Y F,Wu F L,Chang H,et al.,2016. A Late-Eocene palynological record from the Hoh Xil Basin,northern Tibetan Plateau,and its implications for stratigraphic age,paleoclimate and paleoelevation[J]. Gondwana Research,31:241 − 252. doi: 10.1016/j.gr.2015.01.007
[51] Polissar P J,Freeman K H,Rowley D B,et al.,2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Planetary Science Letters,287(1 − 2):64 − 76. doi: 10.1016/j.jpgl.2009.07.037
[52] Qiang X K,An Z S,Song Y G,et al.,2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago[J]. Science China(Earth Sciences),54(1):136 − 144.
[53] Romanek C S,Grossman E L,Morse J W,1992. Carbon isotopic fractionation in synthetic aragonite and calcite:Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta,56(1):419 − 430.
[54] Rosenbaum J,Sheppard S M,1986. An isotopic study of siderites,dolomites and ankerites at high temperatures[J]. Geochimica et Cosmochimica Acta,50(6):1147 − 1150.
[55] 邵龙义,张鹏飞,1991. 桂中合山组碳酸盐岩的氧、碳稳定同位素组成及古盐度和古温度[J]. 中国煤田地质, (01):25 − 30.
Shao L Y,Zhang P F ,1991. Stable isotope composition of oxygen and carbon, paleo-salinity and paleo-temperature of carbonate rocks in Heshan Formation, Central Guangxi Province[J]. Coal Geology of China, (01):25 − 30 (in Chinese with English abstract).
[56] 施雅风,汤懋苍,马玉贞, 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨[J]. 中国科学(D辑:地球科学), (03):263 − 271.
Shi Y F,Tang M C,Ma Y Z.,1998. Study on the relationship between the second-stage uplift of Qinghai-Tibet Plateau and the breeding of Asian monsoon[J]. Science In China(Series D), (03):263 − 271 (in Chinese with English abstract).
[57] 施雅风, 汤懋苍, 马玉贞, 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨[J]. 中国科学(D辑: 地球科学), (03): 263 − 271.
Song B W,Zhang K X,Han F,et al.,2021. Reconstruction of the latest Eocene-early Oligocene paleoenvironment in the Hoh Xil Basin (Central Tibet) based on palynological and ostracod records [J]. Journal of Asian Earth Sciences,217: 104860.
[58] Song B W,Zhang K X,Zhang L,et al.,2018. Qaidam Basin paleosols reflect climate and weathering intensity on the northeastern Tibetan Plateau during the Early Eocene Climatic Optimum[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,512:6 − 22.
[59] Staisch L M,Niemi N A,Clark M K,et al.,2016. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau[J]. Tectonics,35(4):862 − 895.
[60] Staisch L M,Niemi N A,Hong C,et al.,2014. A Cretaceous‐Eocene depositional age for the Fenghuoshan Group,Hoh Xil Basin:Implications for the tectonic evolution of the northern Tibet Plateau[J]. Tectonics,33(3):281 − 301. doi: 10.1002/2015TC003972
[61] 孙继敏,刘卫国,柳中晖,等,2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊,32(9):951 − 958.
Sun J M,Liu W G,Liu Z H,et al.,2017. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys Ocean on the stepwise aridification of mid-latitude Asian interior[J]. Bulletin of Chinese Academy of Sciences,32(9):951 − 958 (in Chinese with English abstract).
[62] 孙继敏, 刘卫国, 柳中晖, 等, 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊, 32(9): 951 − 958.
Sun J M,Ye J,Wu W Y,et al.,2010. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology,38(6):515 − 518.
[63] Swart P K,Burns S J,Leder J J,1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique[J]. Chemical Geology,86(2):89 − 96.
[64] Talbot M R,1990. A review of the paleohydrological interpretation of carbon and oxygen isotopic-ratios in primary lacustrine carbonates[J]. Chemical Geology,80(4):261 − 279.
[65] Talbot M R,Kelts K,1990. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates,from organic carbon-rich lacustrine sediments:Chapter 6.
[66] Wang C S,Liu Z F,Yi H S,et al.,2002. Tertiary crustal shortenings and peneplanation in the Hoh Xil region:implications for the tectonic history of the northern Tibetan Plateau[J]. Journal of Asian Earth Sciences,20(3):211 − 223.
[67] Wang C S,Zhao X X,Liu Z F,et al.,2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,105(13):4987 − 4992. doi: 10.1016/S1367-9120(01)00051-7
[68] 王成善,戴紧根,刘志飞,等,2009. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,16(3):1 − 30.
Wang C S,Dai J G,Liu Z F,et al.,2009. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques:A review[J]. Earth Science Frontiers,16(3):1 − 30 (in Chinese with English abstract).
[69] 汪素风,陈云,伊海生,等,2023. 西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义[J]. 沉积与特提斯地质,43(3):542 − 554. doi: 10.3321/j.issn:1005-2321.2009.03.001
Wang S F,Chen Y,Yi H S,et al.,2023. The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area,Nyima Basin,and their paleoenvironment and Paleoclimate significance[J]. Sedimentary Geology and Tethyan Geology,43(3):542 − 554 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.03.001
[70] 汪素风, 陈云, 伊海生, 等, 2023. 西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义[J]. 沉积与特提斯地质, 43(3): 542 − 554.
Wang T,Wang Z Q,Yan Z,et al.,2016. Geochronological and geochemical evidence of amphibolite from the Hualong Group,northwest China: Implication for the early Paleozoic accretionary tectonics of the Central Qilian belt[J]. Lithos,248:12 − 21.
[71] Wang X,Carrapa B,Sun Y C,et al.,2020. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene[J]. Geology,48(7):728 − 732.
[72] Wu C,Li J,Ding L,2021a. Low-temperature thermochronology constraints on the evolution of the Eastern Kunlun Range,northern Tibetan Plateau[J]. Geosphere,17(4):1193 − 1213.
[73] Wu C,Zuza A V,Li J,et al.,2021b. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology[J]. Geological Society of America Bulletin,133(11 − 12):2393 − 2417.
[74] Wu C H,Xia G Q,Wagreich M,et al.,2019. Early Miocene expansion of C4 vegetation on the northern Tibetan Plateau[J]. Global and Planetary Change,177:173 − 185. doi: 10.1130/B35879.1
[75] 吴劲宣,夏国清,陈云,等,2022. 西藏伦坡拉盆地渐新世—中新世之交黏土矿物特征及其古气候意义[J]. 沉积学报,40(5):1265 − 1279.
Wu J X,Xia G Q,Chen Y,et al.,2022. Characteristics of clay mineralogy and its paleoclimatic significance across the Oligocene-Miocene transition in the Lunpola Basin,central Tibet[J]. Acta Sedimentologica Sinaca,40(5):1265 − 1279 (in Chinese with English abstract).
[76] 吴珍汉,吴中海,叶培盛,等,2006. 青藏高原晚新生代孢粉组合与古环境演化[J]. 中国地质,33(5):966 − 979.
Wu Z H,Wu Z H,Ye P S,et al.,2006. Late Cenozoic environmental evolution of the Qinghai-Tibet Plateau as indicated by the evolution of sporopollen assemblages[J]. Geology In China,33(5):966 − 979 (in Chinese with English abstract).
[77] 吴珍汉,叶培盛,胡道功,等,2007. 青藏高原北部风火山花岗斑岩锆石U-Pb同位素测年及其地质意义[J]. 现代地质(3):435 − 422. doi: 10.3969/j.issn.1000-3657.2006.05.004
Wu Z H,Ye P S,Hu D G,et al.,2007. U-Pb isotopic dating of zircons from porphyry granite of the Fenghuoshan Mts,northern Tibetan Plateau and its geological significance[J]. Geoscience(3):435 − 422 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.05.004
[78] 吴珍汉,吴中海,胡道功,等,2009. 青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回[J]. 中国地质,36(5):966 − 975.
Wu Z H,Wu Z H,Hu D G,et al.,2009. Carbon and oxygen isotope changes and palaeoclimate cycles recorded by lacustrine deposits of Miocene Wudaoliang Group in northern Tibetan Plateau[J]. Geology In China,36(5):966 − 975 (in Chinese with English abstract).
[79] 吴珍汉, 吴中海, 胡道功, 等, 2009. 青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回[J]. 中国地质, 36(5): 966 − 975. doi: 10.3969/j.issn.1000-3657.2009.05.002
Wu Z H,Barosh P J,Wu Z H,et al.,2008. Vast early Miocene lakes of the central Tibetan Plateau[J]. Geological Society of America Bulletin,120(9 − 10):1326 − 1337. doi: 10.3969/j.issn.1000-3657.2009.05.002
[80] 肖国桥,张春霞,郭正堂,2014. 晚渐新世−早中新世青藏高原隆升与东亚季风演化[J]. 自然杂志(3):165 − 169. doi: 10.1130/B26043.1
Xiao G Q,Zhang C X,Guo Z T,2014. Initiation of East Asian monsoon system related to Tibetan Plateau uplift from the latest Oligocene to the earliest Miocene[J]. Chinese Journal of Nature(3):165 − 169 (in Chinese with English abstract). doi: 10.1130/B26043.1
[81] 肖国桥, 张春霞, 郭正堂, 2014. 晚渐新世−早中新世青藏高原隆升与东亚季风演化[J]. 自然杂志(3): 165 − 169.
Xia G Q,Wu C H,Li G J,et al.,2021. Cenozoic growth of the Eastern Kunlun Range (northern Tibetan Plateau):evidence from sedimentary records in the southwest Qaidam Basin[J]. International Geology Review,63(6):769 − 786.
[82] Xiong Z Y,Ding L,Spicer R A,et al.,2020. The early Eocene rise of the Gonjo Basin,SE Tibet:From low desert to high forest [J]. Earth and Planetary Science Letters,543:116312. doi: 10.1080/00206814.2020.1731717
[83] Xu Q,Ding L,Zhang L Y,et al.,2013. Paleogene high elevations in the Qiangtang Terrane,central Tibetan Plateau[J]. Earth and Planetary Science Letters,362:31 − 42.
[84] 杨国臣,2010. 利用湖泊自生碳酸盐岩氧碳同位素特征分析古湖泊类型的方法——实际应用中的要点及分析程式[J]. 新疆地质,28(2):222 − 227. doi: 10.1016/j.jpgl.2012.11.058
Yang G C,2010. Methods of using carbon-oxygen isotopic characteristics of lacustrine and authigenic carbonates to analyze types of paleolakes:Problems needing attention,the essential points,analytical programs in practical application[J]. Xinjiang Geology,28(2):222 − 227 (in Chinese with English abstract). doi: 10.1016/j.jpgl.2012.11.058
[85] 杨国臣, 2010. 利用湖泊自生碳酸盐岩氧碳同位素特征分析古湖泊类型的方法——实际应用中的要点及分析程式[J]. 新疆地质, 28(2): 222 − 227.
Yang W,Fu L,Wu C D,et al.,2018. U-Pb ages of detrital zircon from Cenozoic sediments in the southwestern Tarim Basin,NW China:Implications for Eocene–Pliocene source-to-sink relations and new insights into Cretaceous–Paleogene magmatic sources[J]. Journal of Asian Earth Sciences,156:26 − 40.
[86] 杨晓璇,李雪峰,郭进京,等,2022. 西秦岭北缘漳县渐新统—中新统湖相碳酸盐岩碳、氧同位素特征及意义[J]. 西北地质,55(2):106 − 115.
Yang X X,Li X F,Guo J J,et al.,2022. Characteristics and significance of C-O isotopes of Oligocene Miocene lacustrine carbonate rocks in Zhangxian,northern margin of west Qinling Mountains[J]. Northwestern Geology,55(2):106 − 115 (in Chinese with English abstract).
[87] 杨晓璇, 李雪峰, 郭进京, 等, 2022. 西秦岭北缘漳县渐新统—中新统湖相碳酸盐岩碳、氧同位素特征及意义[J]. 西北地质, 55(2): 106 − 115.
Yang Y B,Fang X M,Appel E,et al.,2013. Late Pliocene–Quaternary evolution of redox conditions in the western Qaidam paleolake (NE Tibetan Plateau) deduced from Mn geochemistry in the drilling core SG-1[J]. Quaternary Research,80(3):586 − 595.
[88] 伊海生,林金辉,周恳恳,等,2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J]. 古地理学报,9(3):303 − 312.
Yi H S,Lin J H,Zhou K K,et al.,2007. Carbon and oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography,9(3):303 − 312 (in Chinese with English abstract).
[89] 伊海生,时志强,朱迎堂,等,2009. 利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史[J]. 湖泊科学,21(1):77. doi: 10.3969/j.issn.1671-1505.2007.03.008
Yi H S,Shi Z Q,Zhu Y T,et al.,2009. Reconstruction of paleo-salinity and lake-level fluctuation history by using boron concentration in lacustrine mudstones[J]. Journal of Lake Sciences21(1):77 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2007.03.008
[90] 伊海生, 时志强, 朱迎堂, 等, 2009. 利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史[J]. 湖泊科学, 21(1): 77. doi: 10.3321/j.issn:1003-5427.2009.01.010
Zeng L Q,Gatjen J,Reinhardt M,et al.,2023. Extremely 13C-enriched dolomite records interval of strong methanogenesis following a sulfate decline in the Miocene Ries impact crater lake[J]. Geochimica Et Cosmochimica Acta,362:22 − 40. doi: 10.3321/j.issn:1003-5427.2009.01.010
[91] Zhang J,Liu Y G,Fang X M,et al.,2021. Elevation of the Gangdese mountains and their impacts on Asian climate during the late Cretaceous—A modeling study[J]. Frontiers in Earth Science,9:810931.
[92] Zheng H B,Wei X C,Tada R J,et al.,2015. Late Oligocene-early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States of America,112(25):7662 − 7667. doi: 10.3389/feart.2021.810931
[93] 钟大赉,丁林,1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学:D辑,26(4):289 − 295.
Zhong D L,Ding L,1996. Study on uplift process and mechanism of Qinghai-Tibet Plateau[J]. Science in China(Series D),26(4):289 − 295 (in Chinese with English abstract).
[94] 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学: D辑, 26(4): 289 − 295.
Shen J,Xue B,Wu J L,et al.,2010. Lake sedimentation and environmental evolution [M]. Beijing:Science Press.
[95] 周恳恳,伊海生,林金辉,2007. 可可西里盆地中新统五道梁群湖相碳酸盐岩岩石学特征与沉积环境分析[J]. 沉积与特提斯地质,27(1):25 − 31.
Zhou K K,Yi H S,Lin J H,2007. Petrology and sedimentary environments of the lacustrine carbonate rocks from the Miocene Wudaoliang Group in the Hoh Xil Basin,Qinghai[J]. Sedimentary Geology and Tethyan Geology,27(1):25 − 31 (in Chinese with English abstract).
[96] 沈吉,薛滨,吴敬禄,等,2010. 湖泊沉积与环境演化 [M]. 北京:科学出版社.
Zhou K K, Yi H S, Lin J H, 2007. Petrology and sedimentary environments of the lacustrine carbonate rocks from the Miocene Wudaoliang Group in the Hoh Xil Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 27(1): 25 − 31.
-