西藏新一轮找矿突破战略行动存在的问题与对策思考

廖家隆, 章奇志, 何亮, 董宇, 尊珠桑姆. 2025. 西藏新一轮找矿突破战略行动存在的问题与对策思考. 沉积与特提斯地质, 45(1): 152-167. doi: 10.19826/j.cnki.1009-3850.2025.01004
引用本文: 廖家隆, 章奇志, 何亮, 董宇, 尊珠桑姆. 2025. 西藏新一轮找矿突破战略行动存在的问题与对策思考. 沉积与特提斯地质, 45(1): 152-167. doi: 10.19826/j.cnki.1009-3850.2025.01004
LIAO Jialong, ZHANG Qizhi, HE Liang, DONG Yu, ZUNZHU Sangmu. 2025. Problems and countermeasures to the New Round of Prospecting Breakthrough Strategy in Xizang. Sedimentary Geology and Tethyan Geology, 45(1): 152-167. doi: 10.19826/j.cnki.1009-3850.2025.01004
Citation: LIAO Jialong, ZHANG Qizhi, HE Liang, DONG Yu, ZUNZHU Sangmu. 2025. Problems and countermeasures to the New Round of Prospecting Breakthrough Strategy in Xizang. Sedimentary Geology and Tethyan Geology, 45(1): 152-167. doi: 10.19826/j.cnki.1009-3850.2025.01004

西藏新一轮找矿突破战略行动存在的问题与对策思考

  • 基金项目: 中央引导地方项目(ZYYD2025000027)、西藏自治区重点研发及转化(CGZH2025000001)、西藏自治区自然资源厅财政资金项目(XZZF-CKD-FW-2024003)
详细信息
    作者简介: 廖家隆(1983—),男,正高级工程师,主要从事地质矿产勘查与研究工作。E-mail:229408827@qq.com
    通讯作者: 章奇志(1970—),男,正高级工程师,主要从事地质矿产勘查与研究工作。E-mail:240062612@qq.com
  • 中图分类号: P612

Problems and countermeasures to the New Round of Prospecting Breakthrough Strategy in Xizang

More Information
  • 西藏位于全球三大成矿域之一的特提斯—喜马拉雅成矿域东段,得天独厚的地质发展过程和优越的成矿地质条件孕育了丰富的矿产资源。然而,受高原气候和特殊地理环境以及政策因素所影响,该地区的矿产勘查开发工作面临着基础性地质工作程度低、生态红线政策影响大、深部找矿新技术缺乏、科技创新引领不够、地质科技人才缺乏等诸多问题。鉴于此,本文以新一轮找矿突破战略行动为背景,从西藏矿产资源概况及勘查开发现状入手,梳理了制约新一轮找矿突破战略行动实施的主要问题。并针对性地提出加强科技创新引领作用、提升基础地质工作、加强对优势资源的勘查及评价、协调好矿产勘查开发与生态保护政策的关系、完善科技人才管理机制、完善地勘政策和制度体系等方面的建议,为科学推进新一轮找矿突破战略行动提供决策依据。

  • 加载中
  • 图 1  西藏自治区成矿区带划分图

    Figure 1. 

    图 2  西藏主要优势矿产资源储量占全国比例图

    Figure 2. 

    图 3  西藏自治区1∶5万区域地质调查工作程度图

    Figure 3. 

    图 4  西藏自治区1∶5万矿产地质调查工作程度图

    Figure 4. 

    表 1  西藏自治区已发现矿产种类

    Table 1.  Mineral species discovered in Xizang Autonomous Region

    矿产类别 矿种合计 已发现矿种
    有查明资源储量的 尚未查明资源储量的
    能源矿产 7 煤、石油、地热 石煤、天然气、钍、油页岩
    金属矿产 黑色金属矿产 5 铬、铁 锰、钒、钛
    有色金属矿产 12 铜、铅、锌、锡(原生矿、砂矿)、钴、钼、锑、镁、钨、镍、铋
    贵金属矿产 8 金(砂金、伴生金)、银 铂族元素(铂、钯、锇、铱、
    钌、铑)
    稀有、稀土、分散元素矿产 15 锂、铷、铯、镓、铼、铊 铍、锆、锗、锶、铌、钽、锶、轻稀土金属、重稀土金属
    放射性矿产 1
    非金属矿产 冶金辅助原料非金属矿产 15 菱镁矿 蓝晶石、红柱石、白云岩、石英
    岩、萤石、耐火黏土、冶金用脉石英、夕线石、熔剂用灰岩、冶金用砂岩、铁矾土、耐火用橄榄岩、铸型用砂岩
    化工原料非金属矿产 21 硫铁矿、自然硫、盐、硼、砷、
    重晶石、钾盐、天然碱、芒硝、泥炭、溴
    磷、水菱镁矿、钾长石、蛇纹岩、橄榄岩、明矾石、钠硝石、毒重石、磷矿、镁盐
    建筑材料及其他非金属矿产 60 石灰岩、黏土、火山灰、高岭土、大理石、花岗岩、刚玉、水晶
    (压电水晶、熔炼水晶、工艺水晶)、云母、水泥用大理岩、
    石膏、孔雀石
    石棉、滑石、叶蜡石、白垩土、硅藻土、石榴石(工业、工艺两用)、金刚石、冰洲石、绿柱石、电气石、硬玉、软玉、蛇纹石、琥珀、玛瑙、绿玉髓、象牙玉、仁布玉、文部玉、碧玉、鹿斑岩、岫岩玉、石墨、透辉石、沸石、云母、蓝石棉、蛭石、彩色电气石、天然油石、铸石用玄武岩、岩棉用玄武岩、麦饭石、珍珠岩、黑耀岩、松脂岩、浮石、铸石用粗面岩、凹凸棒石黏土、伊利石黏土、页岩、板岩
    水汽矿产 2 矿泉水 地下水
    合计 146 51 95
    下载: 导出CSV

    表 2  西藏自治区矿产地规模及勘查程度一览表

    Table 2.  Scale and exploration degree of mineral deposits in Xizang Autonomous Region

    规模普查(个数)详查(个数)勘探(个数)合计(个数)
    超大型4037
    大型2610238
    中型5217170
    小型10270109
    矿点591464
    矿化点551662
    合计2983616350
    下载: 导出CSV

    表 3  西藏自治区矿产地成矿带分布及勘查程度一览表

    Table 3.  Distribution of ore-forming belts and exploration degree of mineral deposits in Xizang Autonomous Region

    Ⅲ级成矿带普查(个数)详查(个数)勘探(个数)合计(个数)
    Ⅲ-33西金乌兰–金沙江成矿带5106
    Ⅲ-36北羌塘–昌都成矿带172120
    Ⅲ-37喀喇昆仑–他念他翁成矿带270027
    Ⅲ-40班公湖–怒江成矿带113103126
    Ⅲ-41北冈底斯成矿带31913
    Ⅲ-42中冈底斯成矿带141015
    Ⅲ-43南冈底斯–念青唐古拉成矿带619373
    Ⅲ-44雅鲁藏布江成矿带5712069
    Ⅲ-45喜马拉雅成矿带1001
    合计2983616350
    下载: 导出CSV

    表 4  西藏自治区重要矿集区及代表性矿床一览表(来源于《中国矿产地质志·西藏卷》•2021)

    Table 4.  List of important mineralized areas and representative deposits in Xizang Autonomous Region (after China Mineral Resources Geological Gazette • Xizang Volume2021)

    矿集区 所在成矿带 矿集带 面积/km2 主要矿床
    藏东三江
    矿集区
    北羌塘–昌都成矿带、西金乌兰–金沙江成矿带 玉龙Cu、Au、Mo、Pb、Zn、Fe矿集带 3300 玉龙铜矿、扎那尕铜矿、昂青银铅锌矿、多霞松多铜矿、马拉松多铜矿等
    类乌齐–察雅Pb、Zn、Ag、Fe、Cu、Au
    矿集带
    11800 赵发勇铅锌矿、南越拉铅锌矿、赛北弄锡矿、拉诺玛铅锌矿、谢坝铅锌矿等
    冈底斯–喜马拉雅矿集区 北冈底斯成矿带、中冈底斯成矿带、南冈底斯–念青唐古拉成矿带、雅鲁藏布江成矿带、喜马拉雅成矿带 驱龙–甲玛Cu、Mo、Pb、Zn多金属矿集带 5000 驱龙铜矿、甲玛铜多金属矿、邦铺钼铜铅锌矿等
    林周Cu、Fe、Pb、Zn多金属矿集带 3800 帮中铜矿、程巴铜矿、勒青拉铜铁矿、轮朗铜矿等
    蒙亚啊–亚贵拉Cu、Pb、Zn多金属矿集带 2000 蒙亚啊铜铅锌矿、龙马拉铅锌矿、洞中拉铅锌矿、亚贵拉铅锌矿、沙让钼矿等
    雄村Cu、Au多金属矿集带 1300 雄村铜矿、洞嘎金矿、仁钦则金矿等
    春则–纳如松多Pb、Zn多金属矿集带 1800 纳如松多铅锌矿、春哲铁矿、江拉铁矿、斯多弄铅锌矿等
    扎西康Pb、Zn、Sb稀有金属矿集带 3600 扎西康铅锌矿、马扎拉金矿,纳定稀有金属矿等
    山南Cr、Fe、Cu、W、Au多金属矿集带 2900 罗布莎铬铁矿、努日铜钼钨矿、冲木达铜矿、克鲁铜矿等
    厅宫–冲江Cu、Au矿集带 600 冲江铜矿、厅宫铜矿、白容−岗讲铜矿、普松金矿等
    西藏羊八井–羊易地热矿集带 5200 羊八井、羊易、拉多岗、宁中、谷露等地热田
    班公湖–怒江矿
    集区
    喀喇昆仑–他念他翁成矿带、班公湖–怒江成矿带 多龙Cu、Au矿集带 1600 多不杂铜矿、波龙铜矿、荣那铜矿、拿若铜矿、拿厅铜矿、尕尔勤金矿、色那铜金矿(恰秋砂金矿)等
    尕尔穷–嘎拉勒Cu、Au矿集带 1700 尕尔勤铜金矿、嘎啦勒铜金矿、(帮着砂金矿)等
    扎仓茶卡–扎布耶盐湖Li、B、K矿集带 15500 扎仓茶卡、聂尔错、仓木错、基布茶卡、拉果错、扎布耶等盐湖锂硼钾矿
    土门格拉Sb、Cu多金属、煤矿集带 8000 美多锑矿、尕尔西江锑矿、扎那锑矿、旁咪铜矿、土门煤矿等
    下载: 导出CSV

    表 5  西藏自治区在产矿山一览表

    Table 5.  List of mines in operation of Xizang Autonomous Region

    编号名称主矿种开采规模
    1西藏拉萨市堆龙德庆区卓玛矿泉水矿泉水大型
    2西藏昌都县德勒圣泉矿泉水矿泉水小型
    3西藏玉龙铜业股份有限公司玉龙铜矿大型
    4西藏巨龙铜业有限公司驱龙铜多金属矿大型
    5西藏谢通门县纳如松多铅锌矿中型
    6西藏拉萨市墨竹工卡县帮浦矿区东段铅锌矿中型
    7西藏曲松县罗布莎–香卡山–康金拉铬铁矿铬铁矿中型
    8西藏拉萨市当雄县曲玛多矿泉水矿泉水大型
    9西藏定日县克玛乡新木德村珠峰冰川矿泉水矿泉水大型
    10西藏拉萨市圣地饮用天然矿泉水矿泉水中型
    11西藏日喀则岗巴喜马拉雅曲登尼玛矿泉水小型
    12西藏当雄县羊八井地热田地热小型
    13西藏自治区拉萨市尼木县厅宫铜矿大型
    14西藏林芝工布江达县日乌多铅锌矿小型
    15西藏那曲地区嘉黎县蒙亚啊铅锌矿中型
    16西藏那曲地区嘉黎县龙玛拉铅锌矿小型
    17西藏山南隆子县扎西康铅锌多金属矿中型
    18拉萨市堆龙德庆区乃琼镇加木村大理岩矿大理岩小型
    19西藏林芝市比日神山饮用天然矿泉水矿泉水中型
    20西藏日喀则仲巴县扎布耶盐湖矿床钾盐(固体)大型
    硼矿(固体)
    硼矿(液体)
    21西藏拉萨墨竹工卡县知不拉铜多金属矿大型
    22西藏阿里冈仁波齐优质天然矿泉水矿泉水小型
    23西藏华泰龙矿业开发有限公司墨竹工卡县甲玛铜多金属矿大型
    24西藏加查县邦布矿区岩金矿岩金中型
    25西藏山南曲松县罗布莎铬铁矿铬铁矿小型
    26西藏山南曲松县五井岭饮用天然矿泉水矿泉水中型
    27西藏山南曲松县罗布莎I、II矿群南部铬铁矿铬铁矿大型
    28西藏自治区类乌齐县卡玛多菱镁矿菱镁矿大型
    下载: 导出CSV
  • [1]

    陈明,孙伟,陈浩,等,2020. 西藏南羌塘鄂斯玛地区中侏罗统布曲组沉积特征及油气地质意义[J]. 沉积与特提斯地质,40(3):96 − 101.

    Chen M,Sun W,Chen H,et al.,2020. Sedimentary characteristics and oil-gas geological significance of the Middle Jurassic Buqu Formation in the Ersma area,Southern Qiangtang Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,40(3):96 − 101 (in Chinese with English abstract).

    [2]

    Chen X,Zheng Y Y,Gao S B,et al.,2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit,Western Gangdese,and Implications for Regional Metallogeny[J]. Gondwana Research,85:103 − 123. doi: 10.1016/j.gr.2020.04.006

    [3]

    陈毓川, 1999. 中国主要成矿区带矿产资源远景评价[M]. 北京: 地震出版社.

    Chen Y C,1999. Assessment of Mineral Resources Prospects in China's Major Ore-Forming Belts[M]. Beijing:The Press of Seismology(in Chinese).

    [4]

    Chen Y C,Wang D H,2001. The research on Himalayan endogenetic metallogenesis[M]. Beijing:The Press of Seismology(in Chinese).

    [5]

    程文斌,顾雪祥,唐菊兴,等,2010. 西藏冈底斯−念青唐古拉成矿带典型矿床硫化物 Pb 同位素特征——对成矿元素组合分带性的指示[J]. 岩石学报,26(11):3350 − 3362.

    Cheng W B,Gu X X,Tang J X,et al.,2010. Lead isotope characteristics of ore sulfides from typical deposits in the Gangdese-Nyainqentanglha metallogenic belt:Implications for the zonation of ore forming elements.[J]. Acta Petrologica Sinica,26(11):3350 − 3362 (in Chinese with English abstract).

    [6]

    方向,宋扬,唐菊兴,等,2020. 西藏班公湖−怒江成矿带商旭金矿成矿时代探讨及其地质意义[J]. 地质学报,94(11):3376 − 3390.

    Fang X,Song Y,Tang J X,et al.,2020. Metallogenic epoch study on the Shangxu gold deposit,Bangong-Nujiang suture zone,Tibet and its geological implications[J]. Acta Geologica Sinica,94(11):3376 − 3390 (in Chinese with English abstract).

    [7]

    程文斌, 顾雪祥, 唐菊兴, 等, 2010. 西藏冈底斯−念青唐古拉成矿带典型矿床硫化物 Pb 同位素特征——对成矿元素组合分带性的指示[J]. 岩石学报, 26(11): 3350 − 3362.

    Fan J J,Li C,Wang M,et al.,2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences,107(1):231 − 249.

    [8]

    付建刚,李光明,董随亮,等,2022. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆−热液过程的指示[J]. 沉积与特提斯地质,42(2):288 − 299. doi: 10.3969/j.issn.0001-5717.2020.11.013

    Fu J G,Li G M,Dong S L,et al.,2022. Mineral chemistry of garnet and its implication for the magmatic-hydrothermal transition in rare metal leucogranites in the Lalong dome,southern Tibet,China[J]. Sedimentary Geology and Tethyan Geology,42(2):288 − 299 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.11.013

    [9]

    Groves D I,Bierlein F P,2007. Geodynamic Settings of Mineral Deposit Systems[J]. Journal of the Geological Society,164(1):19 − 30. doi: 10.1007/s00531-017-1487-4

    [10]

    韩春明,肖文交,方爱民,等,2021. 西昆仑及邻区成矿规律和成矿系列[J]. 岩石学报,37(12):3615 − 3644.

    Han C M,Xiao W J,Fang A M,et al.,2021. Metallogenic regularity and metallogenic series of West Kunlun and its adjacent areas.[J]. Acta Petrologica Sinica,37(12):3615 − 3644 (in Chinese with English abstract).

    [11]

    何登发,王成善,管树巍,等,2023. 分层滑脱:羌塘盆地构造研究的新概念[J]. 地质科学,58(1):1 − 17. doi: 10.1144/0016-76492006-065

    He D F,Wang C X,Guan S W,et al.,2023. Stratified detachment deformation:New concept for studies on the tectonics of Qiangtang Basin[J]. Chinese Journal of Geology,58(1):1 − 17 (in Chinese with English abstract). doi: 10.1144/0016-76492006-065

    [12]

    韩春明, 肖文交, 方爱民, 等, 2021. 西昆仑及邻区成矿规律和成矿系列[J]. 岩石学报, 37(12): 3615 − 3644. doi: 10.18654/1000-0569/2021.12.03

    Hou Z Q,Cook N J,2009. Metallogenesis of the Tibetan Collisional Orogen:A review and introduction to the special issue[J]. Ore Geology Reviews,36(1-3):2 − 24. doi: 10.18654/1000-0569/2021.12.03

    [13]

    何登发, 王成善, 管树巍, 等, 2023. 分层滑脱: 羌塘盆地构造研究的新概念[J]. 地质科学, 58(1): 1 − 17. doi: 10.12017/dzkx.2023.001

    Hou Z Q,Yang Z M,Lu Y J,et al.,2015. A genetic linkage between subduction and collision-related porphyry Cu deposits in continental collision zones[J]. Geology,43(3):247 − 250. doi: 10.12017/dzkx.2023.001

    [14]

    Hou Z Q,Zhang H,2015. Geographical and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Review,70:346 − 384.

    [15]

    侯增谦,莫宣学,杨志明,等,2006. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质,36(4):809 − 818. doi: 10.1130/G36362.1

    Hou Z Q,Mo X X,Yang Z M,et al.,2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types[J]. Geology in China,36(4):809 − 818 (in Chinese with English abstract). doi: 10.1130/G36362.1

    [16]

    侯增谦,郑远川,卢占武,等,2020. 青藏高原巨厚地壳:生长、加厚与演化[J]. 地质学报,94(10):797 − 2815. doi: 10.1016/j.oregeorev.2014.10.026

    Hou Z Q,Zheng Y C,Lu Z W,et al.,2020. Growth,thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica,94(10):797 − 2815. https://kns.cnki.net/ kcms2/detail/11.1167.P.20230717.2046.004.html (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2014.10.026

    [17]

    姜贞贞,刘高令,卓玛曲西,等,2021. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究,29(3):104 − 110.

    Jiang Z Z,Liu G L,Zhuoma Q X,et al.,2021. Present Situation and Suggestions of Saline Lake Lithium Resource in Tibet under the Current Situation of Supply and Demand of LithiumResources in China[J]. Journal of Salt Lake Research,29(3):104 − 110 (in Chinese with English abstract).

    [18]

    鞠建华,2022. “双碳”目标背景下矿业发展新机遇与实现路径[J]. 中国矿业,31(1):1 − 5.

    Ju J H,2022. New opportunities and implementation path of mining development under the background of "double carbon" goal[J]. China Mining Magazine,31(1):1 − 5 (in Chinese with English abstract).

    [19]

    姜贞贞, 刘高令, 卓玛曲西, 等, 2021. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究, 29(3): 104 − 110.

    Kapp P,Murphy M A,Yin A,et al.,2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics,22(4):1 − 24.

    [20]

    鞠建华, 2022. “双碳”目标背景下矿业发展新机遇与实现路径[J]. 中国矿业, 31(1): 1 − 5. doi: 10.12075/j.issn.1004-4051.2022.1.zgky202201002

    Lang X H,Tang J X,Li Z J,et al.,2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun District in the Gangdese porphyry copper belt,southern Tibet,PRC[J]. Journal of Asian Earth Sciences,79:608 − 622. doi: 10.12075/j.issn.1004-4051.2022.1.zgky202201002

    [21]

    冷秋锋,李文昌,戴成龙,等,2023. 西藏那茶淌铅锌矿床S-Pb 同位素组成及其示踪成矿物质来源[J]. 沉积与特提斯地质,43(1):168 − 179.

    Leng Q F,Li W C,Dai C L,et al.,2023. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Tibet[J]. Sedimentary Geology and Tethyan Geology,43(1):168 − 179 (in Chinese with English abstract).

    [22]

    李国政,2019. 新中国成立后西藏矿业发展述论[J]. 河南理工大学学报: 社会科学版,20(2):40 − 46. doi: 10.1016/j.jseaes.2013.08.009

    Li G Z,2019. A review of the development of mining industry in Tibet after the founding of New China[J]. Journal of Henan Polytechnic University ( Social Sciences),20(2):40 − 46 (in Chinese with English abstract). doi: 10.1016/j.jseaes.2013.08.009

    [23]

    李建康,刘喜方,王登红,2014. 中国锂矿成矿规律概要[J]. 地质学报,88(12):2269 − 2283.

    Li J K,Liu X F,Wang D H,2014. The Metallogenetic Regularity of Lithium Deposit in China[J]. Acta Geologica Sinica,88(12):2269 − 2283 (in Chinese with English abstract).

    [24]

    李国政, 2019. 新中国成立后西藏矿业发展述论[J]. 河南理工大学学报: 社会科学版, 20(2): 40 − 46.

    Li L H,Xie C M,Ren Y S,et al.,2020. Discovery of Late Triassic mineralization in the Gangdese metallogenic belt,Tibet:The Banduo Pb-Zn deposit,Somdo area[J]. Ore Geology Reviews,126:103754.

    [25]

    李阳,宋扬,唐菊兴,等,2024. 西藏锑矿分布、类型及其成矿规律研究[J]. 中国地质,51(5)1570 − 1600.

    Li Y,Song Y,Tang J X,et al.,2024. Distribution,types and metallogenic regularity of antimony deposits in Tibet[J]. Geology in China,51(5):1570 − 1600 (in Chinese with English abstract).

    [26]

    刘洪,黄瀚霄,张林奎,等,2021. 西藏冈底斯成矿带西段鲁尔玛晚三叠世斑岩型铜(金) 矿点的发现及意义[J]. 沉积与特提斯地质,41(4):599 − 611. doi: 10.1016/j.oregeorev.2020.103754

    Liu H,Huang H X,Zhang L K,et al.,2021. Luerma,a newly discovered Late Triassic porphyry copper-gold ore-spot in the western Gangdise metallogenic belt,Tibet[J]. Sedimentary Geology and Tethyan Geology,41(4):599 − 611 (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2020.103754

    [27]

    刘中戎,张佳伟,2017. 西藏羌塘盆地中生代晚期构造事件与油气的关系[J]. 沉积与特提斯地质,37(2):23 − 29.

    Liu Z R,Zhang J W,2017. Late Mesozoic tectonic events and hydrocarbon accumulation in the Qiangtang Basin,northern Xizang[J]. Sedimentary Geology and Tethyan Geology,37(2):23 − 29 (in Chinese with English abstract).

    [28]

    路耀祖,杨晓刚,2016. 青海南巴颜喀拉造山带扎开陇巴地区地质特征及金矿找矿前景[J]. 黄金科学技术,24(1):28 − 34.

    Lu Y Z,Yang X G,2016. Geological characteristics and prospecting of gold deposit in Zhakailongba area,south Bayan Har orogenic belt of Qinghai Province[J]. Gold Science and Technology,24(1):28 − 34 (in Chinese with English abstract).

    [29]

    罗梅,潘凤雏,李巨初,等,2014. 西藏羌塘−三江区金属矿床成矿系列研究[J]. 地质学报,88(12):2556 − 2571. doi: 10.3969/j.issn.1009-3850.2017.02.003

    Luo M,Pan F C,Li J C,et al.,2014. Metallogenic series study of ore deposits in the Tibet Qiangtang-Sanjiang District[J]. Acta Geologica Sinica,88(12):2556 − 2571 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.02.003

    [30]

    吕忠梅,马鑫,2023. 打造特殊空间区域保护的“中国样本”[J]. 环境保护,51(16):10 − 17. doi: 10.11872/j.issn.1005-2518.2016.01.028

    Lü Z M,Ma X,2023. Create a "Chinese sample" for the protection of special space areas[J]. Environmental Protection,51(16):10 − 17 (in Chinese with English abstract). doi: 10.11872/j.issn.1005-2518.2016.01.028

    [31]

    马冠卿,1998. 西藏区域地质基本特征[J]. 中国区域地质,17(1):16 − 24.

    Ma G Q,1998. Basic regional geological features of Tibet[J]. Regional Geology of China,17(1):16 − 24 (in Chinese with English abstract).

    [32]

    吕忠梅, 马鑫, 2023. 打造特殊空间区域保护的“中国样本”[J]. 环境保护, 51(16): 10 − 17.

    Pan G T,Wang L Q,Li R S,et al.,2012. Tectonic evolution of the Qinghai–Tibet Plateau[J]. Journal of Asian Earth Sciences,53:3 − 14.

    [33]

    潘桂棠,李振兴,王立全,等,2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报,21(11):701 − 707.

    Pan G T,Li Z X,Wang L Q,et al.,2002. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China,21(11):701 − 707 (in Chinese with English abstract).

    [34]

    潘桂棠,王立全,尹福光,等,2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质,42(2):151 − 175. doi: 10.1016/j.jseaes.2011.12.018

    Pan G T,Wang L Q,Yin F G,et al.,2022. Researches on geological-tectonic evolution of Tibetan Plateau:A review,recent advances,and directions in the future[J]. Sedimentary Geology and Tethyan Geology,42(2):151 − 175 (in Chinese with English abstract). doi: 10.1016/j.jseaes.2011.12.018

    [35]

    秦克章,周起凤,赵俊兴,等,2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报,95(10):3146 − 3162. doi: 10.3969/j.issn.1671-2552.2002.11.002

    Qin K Z,Zhou Q F,Zhao J X,et al.,2021. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes[J]. Acta Geologica Sinica,95(10):3146 − 3162 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2002.11.002

    [36]

    潘桂棠, 王立全, 尹福光, 等, 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151 − 175.

    Qu X M,Wang R J,Xin H B,et al.,2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture,Tibetan plateau[J]. Lithos,146-147:264 − 275.

    [37]

    秦克章, 周起凤, 赵俊兴, 等, 2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 95(10): 3146 − 3162. doi: 10.3969/j.issn.0001-5717.2021.10.014

    Seltman R,Faragher A E,1994. Collisional orogens and their related metallogeny - a preface[C]. Metallogeny of Collisional orogens,7 − 20. doi: 10.3969/j.issn.0001-5717.2021.10.014

    [38]

    史长义,2021. 西藏玉龙Cu成矿带及其外围地区异常结构模式找矿预测研究[J]. 地质学报,95(11):3163 − 3177. doi: 10.1016/j.lithos.2012.05.006

    Shi C Y,2021. Research on prospecting prediction for the Yulong Cu metallogenic belt and its peripheral areas based on the model for spatial structures of regional geochemical multi-element anomalies,Tibet[J]. Acta Geologica Sinica,95(11):3163 − 3177 (in Chinese with English abstract). doi: 10.1016/j.lithos.2012.05.006

    [39]

    宋扬,曾庆高,刘海永,等,2019. 班公湖−怒江洋形成演化新视角:兼论西藏中部古−新特提斯转换[J]. 岩石学报,35(3):625 − 641.

    Song Y,Zeng Q G,Liu H Y,et al.,2019. An innovative perspective for the evolution of Bangong-Nujiang Ocean:Also discussing the Paleo-and Neo-Tethys conversion[J]. Acta Petrologica Sinica,35(3):625 − 641 (in Chinese with English abstract).

    [40]

    宋扬,唐菊兴,曲晓明,等,2014. 西藏班公湖−怒江成矿带研究进展及一些新认识[J]. 地球科学进展,29(7):795 − 809. doi: 10.3969/j.issn.0001-5717.2021.11.001

    Song Y,Tang J X,Qu X M,et al.,2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science,29(7):795 − 809 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.11.001

    [41]

    宋扬, 曾庆高, 刘海永, 等, 2019. 班公湖−怒江洋形成演化新视角: 兼论西藏中部古−新特提斯转换[J]. 岩石学报, 35(3): 625 − 641. doi: 10.18654/1000-0569/2019.03.02

    Stampfli G M,Hochard C,Vérard C,et a1.,2013. The formation of Pangea[J]. Tectonophysics,593(Complete):1 − 19. doi: 10.18654/1000-0569/2019.03.02

    [42]

    孙晓明,韦慧晓,翟伟,等,2010. 南邦布大型造山型金矿成矿流体地球化学和成矿机制[J]. 岩石学报,26(6):1672 − 1684.

    Sun X M,Wei H X,Zhai W,et al.,2010. Ore-forming fluid geochemistry and metallogenic mechanisn of Bangbu large-scale orogenic gold deposit in southern Tibet China[J]. Acta Petrologica Sinica,26(6):1672 − 1684 (in Chinese with English abstract).

    [43]

    唐菊兴,王勤,2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学,21(1):140 − 147.

    Tang J X,Wang Q,2019. Advantages of copper resources and prospects for their exploitation and utilization in Tibet[J]. Strategic Study of CAE,21(1):140 − 147 (in Chinese with English abstract).

    [44]

    陶琰,毕献武,辛忠雷,等,2011. 西藏昌都地区拉诺玛锑铅锌多金属矿床地质地球化学特征及成因分析[J]. 矿床地质,30(4):599 − 615.

    Tao Y,Bi X W,Xin Z L,et al.,2011. Geology,geochemistry and origin of Lanuoma Pb-Zn-Sb deposit in Changdu area,Tibet[J]. Mineral Deposits,30(4):599 − 615 (in Chinese with English abstract).

    [45]

    陶琰,朱飞霖,辛忠雷,等,2010. 西藏昌都地区拉诺玛锑铅锌多金属矿成矿模式探讨[J]. 矿床地质( 增刊 ):283 − 284. doi: 10.15302/J-SSCAE-2019.01.020

    Tao Y,Zhu F L,Xin Z L,et al.,2010. Research on the mineralization model of the Lanoma antimony-lead-zinc polymetallic deposit in Changdu area of Tibet[J]. Mineral Deposits (Suppl):283 − 284 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2019.01.020

    [46]

    陶琰, 毕献武, 辛忠雷, 等, 2011. 西藏昌都地区拉诺玛锑铅锌多金属矿床地质地球化学特征及成因分析[J]. 矿床地质, 30(4): 599 − 615. doi: 10.3969/j.issn.0258-7106.2011.04.002

    Wang B D,Wang L Q,Chung S L,et al.,2016. Evolution of the Bangong-Nujiang Tethyan ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos,245:18 − 33. doi: 10.3969/j.issn.0258-7106.2011.04.002

    [47]

    王璞,2018. 西藏铜资源开发利用现状[J]. 中国钼业,42(2):26 − 30.

    Wang P,2018. The status of copper resource exploitation and utilization in Tibet[J]. China Molybdenum Industry,42(2):26 − 30 (in Chinese with English abstract).

    [48]

    王汝成,吴福元,谢磊,等,2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学(地球科学),47(8):871 − 880. doi: 10.1016/j.lithos.2015.07.016

    Wang R C,Wu F Y,Xie L,et al.,2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts,South Tibet.[J]. Scientia Sinica(Terrae),47(8):871 − 880 (in Chinese with English abstract). doi: 10.1016/j.lithos.2015.07.016

    [49]

    王修,刘冲昊,范凤岩,等,2022. 西藏矿业资源开发现状与环境保护协调发展对策探讨[J]. 有色金属(矿山部分),74(6):37 − 43.

    Wang X,Liu C H,Fan F Y,et al.,2022. Discussion on coordinative development countermeasure of mineral resources exploitation and environmental protection in Tibet,China[J]. Nonferrous Metals(Mining Section),74(6):37 − 43 (in Chinese with English abstract).

    [50]

    王卓,黄冉笑,吴大天,等,2023. 盐湖卤水型锂矿基本特征及其开发利用潜力评价[J]. 中国地质,50(1):102 − 117.

    Wang Z,Huang R X,Wu D T,et al.,2023. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China,50(1):102 − 117 (in Chinese with English abstract).

    [51]

    王修, 刘冲昊, 范凤岩, 等, 2022. 西藏矿业资源开发现状与环境保护协调发展对策探讨[J]. 有色金属(矿山部分), 74(6): 37 − 43. doi: 10.3969/j.issn.1671-4172.2022.06.006

    Wu F Y,Liu X C,Liu Z C,Wang R C,et al.,2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos,352-353:105319. doi: 10.3969/j.issn.1671-4172.2022.06.006

    [52]

    吴福元,刘小驰,纪伟强,等,2017. 高分异花岗岩的识别与研究[J]. 中国科学(地球科学),47(7):745 − 765. doi: 10.12029/gc20220808001

    Wu F Y,Liu X C,Ji W Q,et al.,2017. Highly fractionated granites:Recognition and research[J]. Scientia Sinica(Terrae),47(7):745 − 765 (in Chinese with English abstract). doi: 10.12029/gc20220808001

    [53]

    吴福元,王汝成,刘小驰,等,2021. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报,37(11):3261 − 3276. doi: 10.1016/j.lithos.2019.105319

    Wu F Y,Wang R C,Liu X C,et al.,2021. New breakthroughs in the studies of Himalayan rare-metal mineralization[J]. Acta Petrologica Sinica,37(11):3261 − 3276 (in Chinese with English abstract). doi: 10.1016/j.lithos.2019.105319

    [54]

    吴珍汉,季长军,赵珍,等,2019. 羌塘盆地半岛湖—东湖地区主力烃源岩及油气资源潜力[J]. 地质学报,93(7):1738 − 1753.

    Wu Z H,Ji C J,Zhao Z,et al.,2019. Main source rock and oil resource potential of the Bandaohu-Donghu area in the northern Qiangtang Basin[J]. Acta Geologica Sinica,93(7):1738 − 1753 (in Chinese with English abstract).

    [55]

    席伟杰,肖克炎,2016. 冈底斯−藏南Cu-Au-Pb-Zn-Mo成矿带成矿地质特征与资源潜力分析[J]. 地质学报,90(7):1636 − 1649. doi: 10.18654/1000-0569/2021.11.01

    Xi W J,Xiao K Y,2016. Geological features and resource potential of the Gangdise-southern Tibet Cu-Ag-Pb-Zn-Mo metallogenic belt[J]. Acta Geologica Sinica,90(7):1636 − 1649 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01

    [56]

    吴珍汉, 季长军, 赵珍, 等, 2019. 羌塘盆地半岛湖—东湖地区主力烃源岩及油气资源潜力[J]. 地质学报, 93(7): 1738 − 1753. doi: 10.3969/j.issn.0001-5717.2019.07.013

    Xie F W,Tang J X,2021. The Late Triassic-Jurassic magmatic belt and its implications for the double subduction of the Neo-Tethys Ocean in the southern Lhasa subterrane,Tibet[J]. Gondwana Research,97:1 − 21. doi: 10.3969/j.issn.0001-5717.2019.07.013

    [57]

    谢富伟,郎兴海,唐菊兴,等,2022. 西藏冈底斯成矿带成矿规律[J]. 矿床地质,41(5):952 − 974. doi: 10.3969/j.issn.0001-5717.2016.07.026

    Xie F W,Lang X H,Tang J X,et al.,2022. Metallogenic regularity of Gangdese metallogenic belt,Tibet[J]. Mineral Deposits,41(5):952 − 974 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.07.026

    [58]

    徐琳,罗绍强,唐华,等,2020. 西藏南羌塘盆地达卓玛地区油气地质条件研究[J]. 中国地质调查,7(5):16 − 24. doi: 10.1016/j.gr.2021.05.007

    Xu L,Luo S Q,Tang H,et al.,2022. Study on petroleum geological conditions in Dazhuom area of Southern Qiangtang Basin of Tibet[J]. Geological Survey of China,7(5):16 − 24 (in Chinese with English abstract). doi: 10.1016/j.gr.2021.05.007

    [59]

    徐志刚,陈毓川,王登红,等,2008. 中国成矿区带划分方案[M]. 北京:地质出版社.

    Xu Z G,Chen Y C,Wang D H,et al.,2008. The scheme of the classification of the minerogenetic units in China[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    [60]

    姚传江,2018. 西藏生态脆弱区绿色矿业开发模式研究[J]. 中国有色金属(S1):432 − 434.

    Yao C J,2018. Research on green mining development model in ecologically fragile areas of Tibet[J]. China Nonferrous Metals(S1):432 − 434 (in Chinese with English abstract).

    [61]

    易建洲,王啸祎,林德才,等,2023. 新一轮找矿突破战略行动背景下西藏矿业绿色发展建议[J]. 中国矿业,3(7):45 − 49.

    Yi J Z,Wang X Y,Lin D C,et al.,2023. Suggestions for green development of mining industry in Tibet against the background of a new round of strategic breakthrough in mineral exploration[J]. China Mining Magazine,3(7):45 − 49 (in Chinese with English abstract).

    [62]

    尹莉洁,易建洲,林毅斌,等,2023. 新形势下西藏绿色矿山建设高质量发展研究[J]. 中国国土资源经济,36(4):73 − 81.

    Yin L J,Yi J Z,Lin Y B,et al.,2023. Research on high-quality development of green mine construction in Tibet under the new situation[J]. Natural Resource Economics of China,36(4):73 − 81 (in Chinese with English abstract).

    [63]

    张大伟,2011. 西藏地区油气资源潜力与战略选区[J]. 中国矿业,20(3):1 − 5. doi: 10.12075/j.issn.1004-4051.20230510

    Zhang D W,2011. Potential of hydrocarbon resources and strategic research in Tibet area[J]. China Mining Magazine,20(3):1 − 5 (in Chinese with English abstract). doi: 10.12075/j.issn.1004-4051.20230510

    [64]

    张洪瑞,侯增谦,2023. 大陆碰撞成矿作用:深部动力学机制与成矿[J]. 东华理工大学学报:自然科学版,46(6):525 − 536.

    Zhang H R,Hou Z Q,2023. Metallogenesis within collisional orogen:The deep dynamics and formation of mineral deposits[J]. Journal of East China University of Technology(Natural Science),46(6):525 − 536 (in Chinese with English abstract).

    [65]

    张培震,王伟涛,甘卫军,等,2022. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报,96(10):3297 − 3313. doi: 10.3969/j.issn.1004-4051.2011.03.001

    Zhang P Z,Wang W T,Gan W J,et al.,2022. Present-day deformation and geodynamic processes of the Tibetan Plateau[J]. Acta Geologica Sinica,96(10):3297 − 3313 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-4051.2011.03.001

    [66]

    张晓旭,唐菊兴,林彬,等,2022. 西藏玉龙铜矿带南段马牧普铜多金属矿床矿物学特征[J]. 地质学报,96(6):2062 − 2077.

    Zhang X X,Tang J X,Lin B,et al.,2022. Mineralogical characteristics of the Mamupu copper polymetallic deposit in the southern section of the Yulong copper belt,Tibet[J]. Acta Geologica Sinica,96(6):2062 − 2077 (in Chinese with English abstract).

    [67]

    张志,李光明,张林奎,2022. 西藏喜马拉雅带稀有金属矿勘查与研究进展[J]. 沉积与特提斯地质,42(2):176 − 188. doi: 10.3969/j.issn.0001-5717.2022.10.003

    Zhang Z,Li G M,Zhang L K,et al.,2022. Exploration and research progresses of rare metals in Himalayan belt,Tibet[J]. Sedimentary Geology and Tethyan Geology,42(2):176 − 188 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.10.003

    [68]

    张晓旭, 唐菊兴, 林彬, 等, 2022. 西藏玉龙铜矿带南段马牧普铜多金属矿床矿物学特征[J]. 地质学报, 96(6): 2062 − 2077. doi: 10.3969/j.issn.0001-5717.2022.06.010

    Zheng Y Y,Sun X,Gao S B,et al.,2014. Multiple mineralization events at the Jiru porphyry copper deposit,southern Tibet:Implications for Eocene and Miocene magma sources and resource potential[J]. Journal of Asian Earth Sciences,79:842 − 857. doi: 10.3969/j.issn.0001-5717.2022.06.010

    [69]

    郑有业,次琼,高顺宝,等,2021a. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向[J]. 地学前缘,28(3):379 − 402.

    Zheng Y Y,Ci Q,Gao S B,et al.,2021a. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt,Tibet[J]. Earth Science Frontiers,28(3):379 − 402 (in Chinese with English abstract).

    [70]

    郑有业,吴松,次琼,等,2021b. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列[J]. 地球科学,46(6):1909 − 1940. doi: 10.1016/j.jseaes.2013.03.029

    Zheng Y Y,Wu S,Ci Q,et al.,2021b. Cu-Mo-Au metallogenesis and minerogenetic series during superimposed orogenesis process in Gangdese[J]. Earth Science,46(6):1909 − 1940 (in Chinese with English abstract). doi: 10.1016/j.jseaes.2013.03.029

    [71]

    郑有业,赵永鑫,王苹,等,2004. 藏南金锑成矿带成矿规律研究及找矿取得重大进展[J]. 地球科学,29(1):44 − 48.

    Zheng Y Y,Zhao Y X,Wang P,et al.,2004. The mining law of the gold-antimony metallogenic belt in southern Tibet has made significant progress in the research and exploration.[J]. Earth Science,29(1):44 − 48 (in Chinese with English abstract).

    [72]

    郑有业, 吴松, 次琼, 等, 2021b. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列[J]. 地球科学, 46(6): 1909 − 1940.

    Zhou G J,Huan Y Z,Wang L Q,et al.,2023. Identifying ecological priority areas for synergistic conservation across scales in the Asian Water Tower region[J]. Ecosystem Health and Sustainability,(9):36.

    [73]

    周玉,龚大兴,周雄,等,2018. 东昆仑西段卧龙岗花岗斑岩岩石地球化学特征和锆石U-Pb年龄——对可可西里−松潘−甘孜地块构造环境及区域锑成矿时代的限定[J]. 地质通报,37(10):1853 − 1865. doi: 10.3321/j.issn:1000-2383.2004.01.021

    Zhou Y,Gong D X,Zhou X,et al.,2018. Petrogeochemistry and zircon geochronology of the Wolonggang granite porphyry in the western segment of the East Kunlun: Implications for tectonic setting of the Hoh Xil-Songpan-Ganzi Block and regional antimony mineralization timing[J]. Geological Bulletin of China,37(10):1853 − 1865 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.01.021

    [74]

    陈毓川,1999. 中国主要成矿区带矿产资源远景评价[M]. 北京:地震出版社.

    Zhou G J, Huan Y Z, Wang L Q, et al., 2023. Identifying ecological priority areas for synergistic conservation across scales in the Asian Water Tower region[J]. Ecosystem Health and Sustainability, (9): 36.

    [75]

    陈毓川,王登红,2001. 喜马拉雅期内生成矿作用研究[M]. 北京:地震出版社.

    Zhou Y, Gong D X, Zhou X, et al., 2018. Petrogeochemistry and zircon geochronology of the Wolonggang granite porphyry in the western segment of the East Kunlun: Implications for tectonic setting of the Hoh Xil-Songpan-Ganzi Block and regional antimony mineralization timing[J]. Geological Bulletin of China, 37(10): 1853 − 1865.

  • 加载中

(4)

(5)

计量
  • 文章访问数:  107
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2024-04-21
修回日期:  2024-05-29
录用日期:  2024-05-29
刊出日期:  2025-03-20

目录