西准噶尔沙尔布尔提山地区志留纪普里道利世—早泥盆世盆地充填序列及其沉积大地构造意义

杜伟东, 张欣松, 尹家一, 纵瑞文. 2025. 西准噶尔沙尔布尔提山地区志留纪普里道利世—早泥盆世盆地充填序列及其沉积大地构造意义. 沉积与特提斯地质, 45(1): 48-68. doi: 10.19826/j.cnki.1009-3850.2025.02001
引用本文: 杜伟东, 张欣松, 尹家一, 纵瑞文. 2025. 西准噶尔沙尔布尔提山地区志留纪普里道利世—早泥盆世盆地充填序列及其沉积大地构造意义. 沉积与特提斯地质, 45(1): 48-68. doi: 10.19826/j.cnki.1009-3850.2025.02001
DU Weidong, ZHANG Xinsong, YIN Jiayi, ZONG Ruiwen. 2025. Sedimentary-tectonic significance of the Silurian–Devonian basin filling sequence in the Shaerbuerti Mountain area, western Junggar. Sedimentary Geology and Tethyan Geology, 45(1): 48-68. doi: 10.19826/j.cnki.1009-3850.2025.02001
Citation: DU Weidong, ZHANG Xinsong, YIN Jiayi, ZONG Ruiwen. 2025. Sedimentary-tectonic significance of the Silurian–Devonian basin filling sequence in the Shaerbuerti Mountain area, western Junggar. Sedimentary Geology and Tethyan Geology, 45(1): 48-68. doi: 10.19826/j.cnki.1009-3850.2025.02001

西准噶尔沙尔布尔提山地区志留纪普里道利世—早泥盆世盆地充填序列及其沉积大地构造意义

  • 基金项目: 国家自然科学基金(42002017,42072041)
详细信息
    作者简介: 杜伟东(1998—),男,助理工程师,主要从事地质勘查、沉积学方面的研究。E-mail:369063190@qq.com
    通讯作者: 张欣松(1992—),男,博士,讲师,主要从事微体古生物学,地层学,沉积学方面的研究。E-mail:zxs19464@gmail.com
  • 中图分类号: P534.3

Sedimentary-tectonic significance of the Silurian–Devonian basin filling sequence in the Shaerbuerti Mountain area, western Junggar

More Information
  • 新疆西准噶尔北部谢米斯台山—沙尔布尔提山地区是中亚造山带的重要组成部分。志留纪普里道利世—早泥盆世期间,该地区沉积了一套由海相复理石到陆棚碳酸盐岩转变的盆地充填序列,其沉积体系的时空展布、岩相变化以及物源分析可为重建西准噶尔北部古地理格局以及古亚洲洋演化提供证据。本文对沙尔布尔提山地区的芒克鲁Ⅱ剖面进行了详细的岩相分析、砂岩碎屑统计、主、微量元素分析,来探讨沉积盆地的演化过程、构造背景和物源属性。芒克鲁Ⅱ剖面出露乌吐布拉克组与曼格尔组,剖面由底到顶依次出现盆地—斜坡背景层沉积、盆地浊积岩、陆棚边缘的异重流扇、陆棚、浅水颗粒滩的相序列,表现为向上变浅的盆地充填序列。沉积物以砂岩、砾岩和生物碎屑颗粒灰岩为主。砂岩成分以长石、岩屑为主,成分变异指数ICV=1.37,值大于1,指示了碎屑岩成熟度低。砂岩样品富集大离子亲石元素(LILEs),亏损高场强元素(HFSEs),轻稀土与重稀土元素比值(LREEs/HREEs)在2.89~7.41,均值6.15。物源判别及构造判别图解综合显示其物源主要来自长英质火山岩及安山岩的混合源区,物源区以大陆岛弧与大洋岛弧环境为主。研究表明,谢米斯台山–沙尔布尔提山岛弧火山岩可能为盆地充填过程提供了丰富的物源,盆地浊积岩向陆棚异重岩沉积的转变不仅代表了盆地充填的暂时性终止,也有可能代表了沙尔布尔提山地区在这一时期的俯冲碰撞活动基本结束。

  • 加载中
  • 图 1  a. 中亚造山带构造格架图(据杨高学等,2023Jahn et al.,2000);b. 西准噶尔地区岛弧环境示意图(据Chen et al.,2015);c. 西准噶尔地质简图(据杨高学等,2023Ren et al.,2017);d. 沙尔布尔提山西南侧地层划分图;e. 芒克鲁Ⅱ剖面地层柱状图 (图例参考后文)

    Figure 1. 

    图 2  芒克鲁Ⅱ剖面6~12层远景图

    Figure 2. 

    图 3  岩相1、岩相2、岩相3露头特征和典型沉积构造

    Figure 3. 

    图 6  砂岩薄片镜下特征

    Figure 6. 

    图 4  岩相4露头特征和典型沉积构造

    Figure 4. 

    图 5  岩相5、岩相6露头特征和典型沉积构造

    Figure 5. 

    图 7  a. 芒克鲁Ⅱ剖面砂岩微量元素原始地幔标准化蛛网图(数据来自Sun and McDonough,1989);b. 稀土元素球粒陨石标准化配分型式图(数据来自Taylor and McLennan,1985

    Figure 7. 

    图 8  芒克鲁Ⅱ剖面盆地充填序列中各岩相的沉积–构造环境示意图

    Figure 8. 

    图 9  芒克鲁Ⅱ剖面砂岩A–CN–K(Al2O3–CaO*+Na2O–K2O)图解

    Figure 9. 

    图 10  砂岩碎屑组分与物源类型判别图解(底图据Dickinson,1979

    Figure 10. 

    图 11  芒克鲁Ⅱ剖面砂岩物源属性判别图解

    Figure 11. 

    图 12  砂岩主、微量元素构造判别图解

    Figure 12. 

    图 13  a. 芒克鲁Ⅱ剖面沉积模式图;b. 不同沉积环境下的岩相类型图;c-d. 准噶尔谢米斯台山–沙尔布尔提山岛弧碰撞构造沉积演化图(据Choulet et al.,2012; 纵瑞文,2016修改)

    Figure 13. 

    表 1  砂岩构造背景的稀土元素判别参数(Bhatia,1985)与本区砂岩的对比

    Table 1.  Comparison of sandstone discriminant parameters and tectonic settings of REEs (after Bhatia, 1985)

    构造背景源区类型La/×10-6Ce/×10-6∑REE/×10-6LREEs/HREEs(La/Yb)NEu/Eu*
    大洋岛弧未切割岩浆弧8.00±1.7019.00±3.7058.00±10.003.80±0.902.80±0.901.04±0.11
    大陆岛弧切割岩浆弧27.00±4.5459.00±8.20146.00±20.007.70±1.707.50±2.500.79±0.13
    活动大陆边缘隆升基底隆起37.0079.00186.009.108.500.60
    被动大陆边缘克拉通内高地39.0085.00210.008.5010.800.56
    盆地相(1~6层均值)13.6927.6475.335.655.671.06
    斜坡相(7~8层均值)13.1026.0568.856.496.800.94
    陆棚异重岩相(9~11层均值)20.9540.76100.137.206.800.96
    陆棚及以上(12~19层均值)18.1236.5297.475.926.010.99
    下载: 导出CSV
  • [1]

    包万铖,夏国清,路畅,等,2023. 西藏伦坡拉盆地牛堡组二段晚始新世−早渐新世地球化学特征与古气候意义[J]. 沉积与特提斯地质,43(3):580 − 591.

    Bao W C,Xia G Q,Lu C,et al.,2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,43(3):580 − 591 (in Chinese with English abstract).

    [2]

    Bhatia M R,1983. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology,91(6):611 − 627.

    [3]

    Bhatia M R,1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:Provenance and tectonic control[J]. Sedimentary Geology,45:97 − 113. doi: 10.1016/0037-0738(85)90025-9

    [4]

    Bhatia M R,Crook K,1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology,92:181 − 193.

    [5]

    Cai C Y,Dou Y W,Edwards D,1993. New observations on a Pridoli plant assemblage from north Xinjiang,northwest China,with comments on its evolutionary and palaeogeographical significance[J]. Geological Magazine,130(2):155 − 170.

    [6]

    Chen J F,Han B F,Zhang L,et al.,2015. Middle Paleozoic initial amalgamation and crustal growth in the West Junggar (NW China): Constraints from geochronology,geochemistry and Sr-Nd-Hf-Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier Mountains[J]. Journal of Asian Earth Sciences,113:90−109.

    [7]

    Chen Wen,Windley,et al.,2017. Late Silurian-early Devonian adakitic granodiorite,A-type and I-type granites in NW Junggar,NW China:Partial melting of mafic lower crust and implications for slab roll-back[J]. Gondwana Research,43:55 − 73.

    [8]

    Choulet F,Faure M,Cluzel D,et al.,2013. Architecture and evolution of accretionary orogens in the Altaids Collage:The early Paleozoic West Junggar (NW China)[J]. American Journal of Science,312:1098 − 1145.

    [9]

    Cox R,Lowe D R,Cullers R L,1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,59:2919 − 2940. doi: 10.1016/0016-7037(95)00185-9

    [10]

    Dickinson W R,1979. Plate tectonics and sandstone compositions[J]. AAPG Bulletin,63:2164 − 2182.

    [11]

    Dickinson W R,Valloni R,1980. Plate settings and provenance of sands in modern ocean basins[J]. Geology,8(2):82 − 86.

    [12]

    Dickinson W R,Beard L S,Brakenridge G R,et al.,1983. Provenance of north American Phanerozoic sandstones in relation to tectonic setting[J]. Geological Society of America Bulletin,94(2):222 − 235.

    [13]

    Dickinson W R,1985. Interpreting provenance relations from detrital modes of sandstones[J]. Provenance of Arenites,148:333 − 361.

    [14]

    Dickinson W R,1988. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins[J]. Springer New York:3 – 25.

    [15]

    Dykstra M,Kneller B,2009. Lateral accretion in a deep-marine channel complex:Implications for channellized flow processes in turbidity currents[J]. Sedimentology,56:1411 − 1432. doi: 10.1111/j.1365-3091.2008.01040.x

    [16]

    Fan R Y,Gong Y M,2016. Ichnological constraints of palaeoenvironmental and palaeoclimatological features of the middle Palaeozoic Palaeo-Asian Ocean,evidence from the western Junggar,NW China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,459:209 − 228.

    [17]

    Fedo C M,Nesbitt H W,Young G M,1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,23:921 − 924.

    [18]

    Floyd P A,Leveridge B E,1987. Tectonic environment of the Devonian gramscatho basin,south Cornwall:Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society,144:531 − 542. doi: 10.1144/gsjgs.144.4.0531

    [19]

    龚一鸣,纵瑞文,王国灿,等,2013. 西准噶尔古生代地层区划及古地理格局[J]. 地层学杂志,37(4):590 − 592.

    Gong Y M,Zong R W,Wang G C,et al.,2013. Paleozoic stratigraphic regionalization and paleogeographic pattern in western Junggar,Northwestern China[J]. Journal of Stratigraphy,37(4):590 − 592 (in Chinese with English abstract).

    [20]

    Gu X X,Liu J M,Zheng M H,et al.,2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan,South China:Geochemical evidence[J]. Journal of Sedimentary Research,72:393 − 407. doi: 10.1306/081601720393

    [21]

    Hein F J,Walker R G,1982. The Cambro‐Ordovician Cap Enragé Formation,Queébec,Canada: Conglomeratic deposits of a braided submarine channel with terraces[J]. Sedimentology,29(3):309 − 329. doi: 10.1111/j.1365-3091.1982.tb01798.x

    [22]

    Jahn B M,Wu F Y,Chen B,2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[C]//The Fourth Hutton Symposium on the Origin of Granites and Related Rocks. Geological Society of America:0. 10.1130/0-8137-2350-7.181.

    [23]

    Johnson K S,et al.,2001. A decadal record of underflows from a coastal river into the deep sea[J]. Geology,29:1019 − 1022.

    [24]

    Liang H,Chen J F,Ma X,et al.,2020. Detrital zircon U‐Pb geochronology and provenance of the Hebukesaier Formation in the Shaerbuerti Mountains,northern West Junggar:Implication for devonian subduction of the Junggar–Balkhash Ocean[J]. Acta Geologica Sinica - English Edition,94:1410 − 1427. doi: 10.1111/1755-6724.14327

    [25]

    李锦轶,2004. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评,50(3):19.

    Li J Y,2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang,NW China[J]. Geological Review,50(3):19 (in Chinese with English abstract).

    [26]

    Li P,Kneller B,Thompson P,et al.,2018. Architectural and facies organisation of slope channel fills:Upper Cretaceous Rosario Formation,Baja California,Mexico[J]. Marine and Petroleum Geology,92:632 − 649. doi: 10.1016/j.marpetgeo.2017.11.026

    [27]

    Liu B,Han B F,Chen J F,et al.,2017. Closure time of the Junggar-Balkhash Ocean:Constraints from late Paleozoic volcano-sedimentary sequences in the Barleik Mountains,West Junggar,NW China[J]. Tectonics,36:2823 − 2845. doi: 10.1002/2017TC004606

    [28]

    刘子玉,吕明,卢景美,等,2017. 东非鲁伍马盆地窄陆架背景下的深水沉积体系[J]. 海相油气地质,22(4):27 −34.

    Liu Z Y,Lü M,Lu J M,et al.,2017. Deepwater depositional system in the background of narrow shelf in the Ruvuma Basin,eastern Africa[J]. Marine Origin Petroleum Geology,22(4):27 −34 (in Chinese with English abstract).

    [29]

    李忠,2013. 中国的盆地动力学——21世纪开初十年的主要研究进展及前沿[J]. 矿物岩石地球化学通报,32(3):290 − 300.

    Li Z,2013. Sedimentary basin geodynamics in China:Advances and frontiers during the first decade of the 21th century[J]. Bulletin of Mineralogy,Petrology and Geochemistry,32(3):290 − 300 (in Chinese with English abstract).

    [30]

    马安林,胡修棉,2021. 沉积记录约束班公湖−怒江缝合带东巧蛇绿岩的仰冲过程[J]. 沉积与特提斯地质,41(2):163 − 175.

    Ma A L,Hu X M,2021. Constraining the obduction process of the Dongqiao ophiolite in the Bangongco-Nujiang suture zone by the sedimentary record[J]. Sedimentary Geology and Tethyan Geology,41(2):163 − 175 (in Chinese with English abstract).

    [31]

    Ma J,Yin J,Liu Y,et al.,2023. The latest encrinurid trilobites from the Lower Devonian of Xinjiang,Northwest China[J]. Geological Magazine,160:1578 − 1585.

    [32]

    Martinsen O J,Smme T O,Helland‐Hansen W,et al.,2009. Relationships between morphological and sedimentological parameters in source‐to‐sink systems: a basis for predicting semi‐quantitative characteristics in subsurface systems[J]. Basin Research,21(4):361 − 387. doi: 10.1111/j.1365-2117.2009.00397.x

    [33]

    McLennan S M,Hemming S R,Mcdaniel D K,et al.,1993. Geochemical approaches to sedimentation,provenance,and tectonics[C]//Processes Controlling the Composition of Clastic Sediments. Geological Society of America:0. 10.1130/SPE284-p21.

    [34]

    M L Irwin, 1980. 陆表海清水沉积作用的一般原理[M]. 冯增昭, 译. 石油地质学译文集( 第四集): 碳酸盐岩沉积环境. 北京: 科学出版社: 10 − 24.

    M L Irwin,1980. General principles of clear water in eperic sea[M]//M M Aslani,et al.,translated by Feng Zengzhao. Carbonate Sedimentary Environments,Series 4 of Collections of Translated Papers on Petroleum Geology. Beijing:Science Press:10 − 24.

    [35]

    牟传龙,2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质,42(3):331 − 339.

    Mou C L,2022. Suggested naming and classification of the word facies[J]. Sedimentary Geology and Tethyan Geology,42(3):331 − 339 (in Chinese with English abstract).

    [36]

    牟传龙, 2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质, 42(3): 331 − 339.

    Mulder T,Syvitski J P M,Migeon S,et al.,2003. Marine hyperpycnal flows:Initiation,behavior and related deposits. A review[J]. Marine and Petroleum Geology,20:861 − 882.

    [37]

    Mulder T,Alexander J,2001. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology,48(2):269 − 299.

    [38]

    Mutti E,Normark W R,1987. Comparing examples of modern and ancient turbidite systems:Problems and concepts[J]. Marine Clastic Sedimentology:1 − 38.

    [39]

    Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299:715 − 717.

    [40]

    Ni Y,Lenz A,Chen X,1998. Pridoli graptolites from northern Xinjiang,Northwest China[J]. Canadian Journal of Earth Sciences,35:1123 − 1133. doi: 10.1038/299715a0

    [41]

    欧阳京,汪双双,于漫,等,2010. 岛弧环境中不同成因的火成岩组合及其地质意义[J]. 甘肃地质,19(2):18−26. doi: 10.1139/e98-059

    Ouyang J,Wang S S,Yu M,et al.,2010. Igneous assemblages of different origin in islandarc and their geological significances[J]. Gansu Geology,19(2):18 − 26 (in Chinese with English abstract). doi: 10.1139/e98-059

    [42]

    欧阳京, 汪双双, 于漫, 等, 2010. 岛弧环境中不同成因的火成岩组合及其地质意义[J]. 甘肃地质, 19(2): 18−26.

    Perfit M R,Gust D A,Bence A E,et al.,1980. Chemical characteristics of island-arc basalts:Implications for mantle sources[J]. Chemical Geology,30:227 − 256.

    [43]

    Ping S,Shen Y,Li X H,et al.,2012. Northwestern Junggar Basin,Xiemisitai Mountains,China:A geochemical and geochronological approach[J]. Lithos,140−141:103 − 118. doi: 10.1016/0009-2541(80)90107-2

    [44]

    Piret Plink-Björklund,Ron J Steel,2004. Initiation of turbidity currents:Outcrop evidence for Eocene hyperpycnal flow turbidites[J]. Sedimentary Geology,165(1 − 2):29 − 52. doi: 10.1016/j.lithos.2012.02.004

    [45]

    Ren R,Han B,Xu Z,et al.,2014. When Did the Subduction First Initiate in the Southern Paleo-Asian Ocean:New Constraints from a Cambrian Intra-Oceanic Arc System in West Junggar,NW China[J]. Earth and Planetary Science Letters,388:222 − 236.

    [46]

    Ren R,Han B F,Guan S W,et al.,2017. Linking the southern West Junggar Terrane to the Yili Block:Insights from the oldest accretionary complexes in West Junggar,NW China[J]. Journal of Asian Earth Sciences,159:279 − 293. doi: 10.1016/j.jpgl.2013.11.055

    [47]

    Roser B P,Korsch R J,1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology,94:635 − 650.

    [48]

    阮伟,黄洁,2010. 潮流沙脊和沙波沉积结构特征——以西班牙东北部比利牛斯前陆盆地Roda砂岩组为例[J]. 沉积学报,28:118 − 127. doi: 10.1086/629071

    Ruan W,Huang J,2010. Sedimentary architecture characteristics of tidal bars and dunes:An example from Roda sandstone in Pyrenean foreland basin,NE Spain[J]. Acta Sedimentologica Sinica,28:118 − 127 (in Chinese with English abstract). doi: 10.1086/629071

    [49]

    阮伟, 黄洁, 2010. 潮流沙脊和沙波沉积结构特征——以西班牙东北部比利牛斯前陆盆地Roda砂岩组为例[J]. 沉积学报, 28: 118 − 127.

    Rudnick R,Shan G,2003. Composition of the continental crust [J]. Treatise on Geochemistry,3:1 − 64.

    [50]

    Şengör A M C,Natal'in B A,Burtman V S,1993. Evolution of the altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature,364:299 − 307.

    [51]

    Şengör A M C,Natal'in B A,1996. Turkic-Type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences,24:263 − 337. doi: 10.1038/364299a0

    [52]

    Shen P,Pan H D,Xiao W J,et al.,2014. An Ordovician intra-oceanic subduction system influenced by ridge subduction in the West Junggar,Northwest China[J]. International Geology Review,56:206 − 223. doi: 10.1146/annurev.earth.24.1.263

    [53]

    Stow D,1985. Fine-grained sediments in deep-water:An overview of processes and facies models[J]. Geo-Marine Letters,5:17 − 23. doi: 10.1080/00206814.2013.839096

    [54]

    Stow D,Smillie Z,2020. Distinguishing between deep-water sediment facies:Turbidites,contourites and hemipelagites[J]. Geosciences,10:68.

    [55]

    Steel E,Simms A R,Steel R,et al.,2018. Hyperpycnal delivery of sand to the continental shelf:Insights from the Jurassic Lajas Formation,Neuquén Basin,Argentina[J]. Sedimentology,65(6):2149 − 2170. doi: 10.3390/geosciences10020068

    [56]

    Sun,McDonough,1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications,42(1):313 − 345. doi: 10.1111/sed.12460

    [57]

    孙福宁,杨仁超,李冬月,2016. 异重流沉积研究进展[J]. 沉积学报,34(3):452 − 462.

    Sun F N,Yang R C,Li D Y,2016. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica,34(3):452 − 462 (in Chinese with English abstract).

    [58]

    唐华,胡林,魏龙,等,2020. 西藏尼木地区变质火山岩的地球化学特征、锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质,40(2):104 − 115.

    Tang H,Hu L,Wei L,et al.,2020. The geochemistry and zircon U-Pb dating for the metamorphic volcanic rocks in Nimu area,Tibet[J]. Sedimentary Geology and Tethyan Geology,40(2):104 − 115 (in Chinese with English abstract).

    [59]

    唐华, 胡林, 魏龙, 等, 2020. 西藏尼木地区变质火山岩的地球化学特征、锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 40(2): 104 − 115.

    Taylor S R,McLennan S M,1985. The continental crust:Its composition and evolution[J]. The Journal of Geology,94:57 − 72.

    [60]

    Van D,Leake B E,1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Transactions of the Royal Society of Edinburgh. Earth sciences,76:411 − 449.

    [61]

    Walker R G,1978. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin,62:239 − 263.

    [62]

    王俊,江武龙,余雅兰,等,2023. 华北克拉通南缘中元古界熊耳群大古石组沉积环境——来自地球化学的证据[J/OL]. 沉积学报:1 − 20[2025-02-25]. https://doi.org/10.14027/j.issn.1000-0550.2023. 012.

    Wang J,Wang W L,Yu Y L,et al.,2023. Depositional environment of the Dagushi Formation,Mesoproterozoic Xiong’er Group,southern North China Block:Evidence from geochemical analysis[J/OL]. Acta Sedimentologica Sinica:1 − 20[2025-02-25]. https://doi.org/10. 14027/j.issn.1000-0550.2023.012 (in Chinese with English abstract).

    [63]

    王志宏,龚一鸣,纵瑞文,等,2014. 西准噶尔乌兰柯顺地区晚泥盆世朱鲁木特组地层新知[J]. 地层学杂志,38(1):51 − 59.

    Wang Z H,Gong Y M,Zong R W,et al.,2014. New knowledge about the Late Devonian Zhulumute Formation in the Wulankeshun region,Western Junggar[J]. Journal of Stratigraphy,38(1):51 − 59 (in Chinese with English abstract).

    [64]

    王志宏,纵瑞文,龚一鸣,等,2015. 晚泥盆世牙形刺及软骨鱼类在西准噶尔塔克台组中的发现及意义[J]. 地球科学,40(3):588 − 596.

    Wang Z H,Zong R W,Gong Y M,et al.,2015. Late Devonian conodonts and chondrichthyes from Taketai Formation in western Junggar,NW China[J]. Earth Science,40(3):588 − 596 (in Chinese with English abstract).

    [65]

    卫巍,庞绪勇,王宇,等,2009. 北疆沙尔布尔提山地区早泥盆−早石炭世沉积相、物源演变及其意义[J]. 岩石学报,25(3):689 − 698.

    Wei W,Pang X Y,Wang Y,et al.,2009. Sediment facies,provenance evolution and their implications of the Lower Devonian to Lower Carboniferous in Shaerbuerti Mountain in North Xinjiang[J]. Acta Petrologica Sinica,25(3) :689 − 698 (in Chinese with English abstract).

    [66]

    卫巍, 庞绪勇, 王宇, 等, 2009. 北疆沙尔布尔提山地区早泥盆−早石炭世沉积相、物源演变及其意义[J]. 岩石学报, 25(3): 689 − 698.

    Windley B F,Alexeiev D,Xiao W,et al.,2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,164:31 − 47.

    [67]

    Windley B,Xiao W,2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt:Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research,61:73 − 87. doi: 10.1144/0016-76492006-022

    [68]

    Xiao W J,Zhang L C,Qin K Z,et al.,2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. American Journal of Science,304(4):370 − 395

    [69]

    Xiao W J,Kusky T,2009. Geodynamic processes and metallogenesis of the Central Asian and Related Orogenic Belts:Introduction[J]. Gondwana Research,16:167 − 169.

    [70]

    Xiao W,Huang B,Han C,et al.,2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research,18:253 − 273.

    [71]

    Xu Z,Han B F,Ren R,et al.,2013. Palaeozoic multiphase magmatism at Barleik Mountain,southern West Junggar,Northwest China: Implications for tectonic evolution of the West Junggar[J]. International Geology Review,55:633 − 656. doi: 10.1016/j.gr.2010.01.007

    [72]

    徐学义,李荣社,陈隽璐,等,2014. 新疆北部古生代构造演化的几点认识[J]. 岩石学报,30(6):1521− 1534. doi: 10.1080/00206814.2012.741315

    Xu X Y,Li R S,Chen J L,et al.,2014. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica,30(6):1521 − 1534 (in Chinese with English abstract). doi: 10.1080/00206814.2012.741315

    [73]

    徐学义, 李荣社, 陈隽璐, 等, 2014. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 30(6): 1521− 1534.

    Yang Z Y,Hu G Y,Xiao H T,et al.,2019. Geochemical characteristics of the Early Cretaceous sandstones from the Tangbai deposit,Tibet: Implications for the tectonic evolution of the southern margin of the Gangdese[J]. Acta Petrologica Sinica,35:2189 − 2205.

    [74]

    杨高学,朱钊,刘晓宇,等,2023. 西准噶尔蛇绿岩:古大洋俯冲增生过程的记录[J]. 地质学报,97(6):2054− 2066. doi: 10.18654/1000-0569/2019.07.15

    Yang G X,Zhu Z,Liu X Y,et al.,2023. Ophiolite in West Junggar:Records of the Subduction-accretion Process in Ancient Ocean. Acta Geologica Sinica,97(6):2054 − 2066 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.15

    [75]

    杨维,王国灿,纵瑞文,等,2015. 西准噶尔志留纪−泥盆纪弧盆格局的确定及其区域构造演化意义[J]. 地球科学,40(3):448 − 460+503.

    Yang W,Wang G C,Zong R W,et al.,2015. Determination of Silurian-Devonian arc-basin pattern in western Junggar and its regional tectonic significance[J]. Earth Science,40(3):448 − 460+503 (in Chinese with English abstract).

    [76]

    杨维, 王国灿, 纵瑞文, 等, 2015. 西准噶尔志留纪−泥盆纪弧盆格局的确定及其区域构造演化意义[J]. 地球科学, 40(3): 448 − 460+503.

    Yoshida M,Yoshiuchi Y,Hoyanagi K,2009. Occurrence conditions of hyperpycnal flows,and their significance for organic-matter sedimentation in a Holocene estuary,Niigata Plain,Central Japan[J]. Island Arc,18(2):320−332.

    [77]

    蔚远江,胡素云,何登发,2020. 准噶尔盆地西北缘二叠系−下侏罗统碎屑岩骨架组分及其物源与构造背景演化示踪[J]. 地质学报,94(5):1347 − 1366.

    Yu Y J,Hu S Y,He D F,2020. Skeleton Components of Permian-Lower Jurassic Clastic Rocks in NW Margin of Junggar Basin:Tracing to Provenance and Tectonic Settings Evolution[J]. Acta Geologica Sinica,94(5):1347 − 1366 (in Chinese with English abstract).

    [78]

    张青林,张向涛,李洪博,等,2022. 南海北部狭窄陆架−断裂陆坡控制的大型深水扇体系[J]. 地球科学,47(7):2421 − 2432.

    Zhang Q L,Zhang X T,Li H. B,et al.,2022. Large submarine fan system controlled by narrow continental shelf-faulted continental slope in northern South China Sea[J]. Earth Science,47(7):2421 − 2432 (in Chinese with English abstract).

    [79]

    赵恒,李艳杰,关宝文,等,2016. 新疆西博格达山周缘地区中新生代沉积岩源区和构造背景[J]. 沉积与特提斯地质,36(3):66 − 76.

    Zhao H,Li Y J,Guan B W,et al.,2016. Provenance and tectonic setting of the Mesozoic to Cenozoic sedimentary rocks around the western Bogeda Mountains,Xinjiang[J]. Sedimentary Geology and Tethyan Geology,36(3):66 − 76 (in Chinese with English abstract).

    [80]

    赵恒, 李艳杰, 关宝文, 等, 2016. 新疆西博格达山周缘地区中新生代沉积岩源区和构造背景[J]. 沉积与特提斯地质, 36(3): 66 − 76. doi: 10.3969/j.issn.1009-3850.2016.03.009

    Zavala C,Gamero H,Arcuri M,2006. Lofting rhythmites:A diagnostic feature for the recognition of hyperpycnal deposits[J]. Geological Society of America Abstracts with Programs,38(7):541. doi: 10.3969/j.issn.1009-3850.2016.03.009

    [81]

    Zavala C,Arcuri M,Di Meglio M,et al.,2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits,in Sediment Transfer from Shelf to Deep Water—Revisiting the Delivery System[J]. AAPG Studies in Geology,61:31 − 51.

    [82]

    Zavala C,Arcuri M,Zorzano A,et al.,2024. Deltas:new paradigms[J]. The Depositional Record,10(5):600 − 636.

    [83]

    Zhang P,Wang G,Shen T,et al.,2021. Paleozoic convergence processes in the southwestern Central Asian Orogenic Belt: Insights from U-Pb dating of detrital zircons from West Junggar,northwestern China[J]. Geoscience Frontiers,12(2):531−548.

    [84]

    Zong R,Wang Z,Jiang T,et al.,2016. Late Devonian radiolarian-bearing siliceous rocks from the Karamay ophiolitic mélange in western Junggar: Implications for the evolution of the Paleo-Asian Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,448:266 − 278.

    [85]

    Zong R W,Gong Y M,2020. Discovery of scyphocrinoid loboliths in western Junggar,Xinjiang,NW China:Implications for scyphocrinoid paleobiogeography and identification of the Silurian–Devonian boundary[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,557:109914.

    [86]

    纵瑞文,王志宏,范若颖,等,2020. 新疆西准噶尔洪古勒楞组与泥盆系−石炭系界线新知[J]. 地质学报,94(8):2460 − 2475.

    Zong R W,Wang Z H,Fan R Y,et al.,2020. New knowledge on the Hongguleleng Formation and Devonian-Carboniferous boundary in western Junggar,Xinjiang[J]. Acta Geologica Sinica,94(8):2460 − 2475 (in Chinese with English abstract).

    [87]

    纵瑞文,2016. 西准噶尔造山带泥盆纪−石炭纪地层系统与古地理重建及其对古亚洲洋演化的约束[D].中国地质大学(武汉).

    Zong R W,2016. Reconstruction of the Devonian-Carboniferous stratal sequence and paleogeography in the western Junggar orogenic belt and its constraint on the evolution of the Paleo-Asian Ocean[D]. China University of Geosciences (Wuhan) (in Chinese with English abstract).

    [88]

    M L Irwin,1980. 陆表海清水沉积作用的一般原理[M]. 冯增昭,译. 石油地质学译文集( 第四集):碳酸盐岩沉积环境. 北京:科学出版社:10 − 24.

    Zong R W, 2016. Reconstruction of the Devonian-Carboniferous stratal sequence and paleogeography in the western Junggar orogenic belt and its constraint on the evolution of the Paleo-Asian Ocean[D]. China University of Geosciences (Wuhan).

  • 加载中

(13)

(1)

计量
  • 文章访问数:  62
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2023-11-20
修回日期:  2024-02-23
录用日期:  2024-02-27
刊出日期:  2025-03-20

目录