Research on exploitation, utilization and environmental quality of groundwater in Zhangjiakou area and suggestions on its utilization and protection
-
摘要: 了解地下水资源与地下水环境质量现状,对干旱-半干旱地区地下水可持续利用具有重要意义。通过资料搜集对张家口地区地下水资源开发利用现状进行了较为系统的梳理;采集177组地下水样品进行水化学特征分析,参照《地下水质量标准》(GB/T14848-2017)选取22项指标进行水质评价,揭示该地区地下水环境质量概况。研究表明,地下水多年平均供水量为1.92亿m3,占供水总量的78.69%;近十年以来,地下水资源承担了居民生活和工农业发展的主要供水任务,导致多地区地下水位持续下降。坝上高原地下水质量总体一般,满足III类水质标准的样品占比仅为44.44%,主要超标物质为氟化物、总硬度和TDS;相反,坝下盆地地下水质量总体较好,70.73%的样品符合III类水质标准要求。其中,水文地质条件是影响高氟地下水分布的主要控制因素,而人类活动输入硝酸盐对地下水化学组分的影响不容忽视。本文为张家口地区地下水污染防治、地下水资源保护与优化配置提供了科学依据。Abstract: Understanding resources and environment quality of groundwater is of great significance for sustainable utilization of groundwater in arid or semi-arid regions.In this study, the development and utilization of groundwater resources in Zhangjiakou area were systematically summarized by collecting data.Additionally, 177 groups of groundwater samples were collected for analysis of hydrochemical characteristics, and 22 indicators were selected for water quality evaluation according to the Groundwater Quality Standard(GB/T14848-2017)to reveal the general situation of groundwater environmental quality.The results showed that the average annual amount of water supply by groundwater was 192 million m3, accounting for 78.69% of the total water supply.In the past ten years, groundwater resources have been the main water supply task for people's life and the development of industry or agriculture, leading to the continuous decline of groundwater level in many regions.Only 44.44% of the samples in Bashang Plateau could satisfy the class III water quality standards, and the main substances exceeding the standard are fluoride, total hardness and TDS.On the contrary, the groundwater quality of Baxia basins was generally good, with 70.73% of the samples meeting the Class III water quality standards.Hydrogeological conditions were the main controlling factors affecting the distribution of highfluoride groundwater, and the influence of nitrate input from human activities on the chemical composition of groundwater cannot be ignored.This paper provided a scientific basis for the prevention and control of groundwater pollution, and the protection and optimal allocation of groundwater resources in Zhangjiakou region.
-
-
[1] ASLAM R A, SHRESTHA S, PANDEY V P.Groundwater vulnerability to climate change:A review of the assessment methodology[J].Science of The Total Environment, 2018, 612:853-875.
[2] TAYLOR R G, SCANLON B, PETRA DÖLL, et al.Ground water and climate change[J].Nature Climate Change, 2013, 3(4):322-329.
[3] LIU J, RAVEN P H.China's Environmental Challenges and Implications for the World[J].Critical Reviews in Environmental Science and Technology, 2010, 40(9-10):823-851.
[4] PERNET-COUDRIER B, Qi X W, LIU H J, et al.Sources and Pathways of Nutrients in the Semi-Arid Region of Beijing-Tianjin, China[J].Environmental Science & Technology, 2012, 46(10):5294-5301.
[5] VÖRÖSMARTY C J, MCINTYRE P, GESSNER M, et al.Global threats to human water security and river biodiversity[J].Nature, 2010, 467(7315):555-561.
[6] YU C.China’s water crisis needs more than words[J].Nature, 2011, 470:307.
[7] WANG S, YANG F L, XU L, et al.Multi-scale analysis of the water resources carrying capacity of the Liaohe Basin based on ecological footprints[J].Journal of Cleaner Production, 2013, 53:158-166.
[8] YANG J, LEI K, KHU S, et al.Assessment of water resources carrying capacity for sustainable development based on a system dynamics model:a case study of Tieling City, China[J].Water resources management, 2015, 29:885-899.
[9] 陈彭,马震,王威,等.滦河三角洲地下水污染调查评价[J].地质调查与研究,2014,2(37):115-122.
[10] ZHAO X, LIU J, LIU Q, et al.Physical and virtual water transfers for regional water stress alleviation in China[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:1031-1035.
[11] CHEN H, TENG Y, LU S, et al.Contamination features and health risk of soil heavy metals in China[J].Science of The Total Environment, 2015, 512:143-153.
[12] MIN L L, SHEN Y J, PEI H W, et al.Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain[J].Journal of Hydrology 2018, 559:510-522.
[13] 杨齐青,马震,孙晓明,等.华北主要城市地下水应急水源地供水前景分析[J].地质调查与研究,2009,(4):297-305.
[14] ZHENG C, LIU J, CAO G, et al.Can China Cope with Its Water Crisis?-Perspectives from the North China Plain[J].Ground Water, 2010, 48(3):350-354.
[15] YUAN Z, SHEN Y.Estimation of Agricultural Water Consumption from Meteorological and Yield Data:A Case Study of Hebei, North China[J].PLoS ONE, 2013, 8(3).
[16] XIAO D, SHEN Y, QI Y, et al.Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region[J].Agricultural Systems, 2017, 153:109-117.
[17] DAI D, SUN M, XU X, et al.Assessment of the water resource carrying capacity based on the ecological footprint:a case study in Zhangjiakou City, North China[J].Environmental Science and Pollution Research, 2019, 26:11000-11011.
[18] 王强,康慕谊,邢开雄.基于水资源约束的张家口坝上生态经济发展研究[J].北京师范大学学报(自然科学版):2011(06):72-78.
[19] 刘娟,魏东玲,王宇红,等.基于水资源合理利用的蔬菜产业结构调整研究[J].河北北方学院学报(自然科学版):2014,(02):51-55.
[20] JIANG B, WONG C P, LU F, et al.Drivers of drying on the Yongding River in Beijing[J].Journal of Hydrology, 2014, 519:69-79.
[21] SONG C, YAN J J, SHA J H, et al.Dynamic modeling application for simulating optimal policies on water conservation in Zhangjiakou City, China[J].Journal of Cleaner Production, 2018, 201:111-122.
[22] LIU C, XU Y, SUN P, et al.Land use change and its driving forces toward mutual conversion in Zhangjiakou City, a farming-pastoral ecotone in Northern China[J].Environmental Monitoring& Assessment, 2017, 189(10):505.
[23] SUN P L, XU Y Q, YU Z L, et al.Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin:a case study of Zhangjiakou city, Hebei Province[J].Journal of Geographical Sciences.2016, 26(3):272-296.
[24] 李红艳,张笑天.张家口市山区地下水氟化物含量现状分析[J].河北建筑工程学院学报,2012,30(3):31-33.
[25] 张振莲.张家口市地下水水质类型分析[C].地下水开发利用与污染防治技术专刊,2009.
[26] 张玉海,逯凤岐,杨世贵,等.张家口冲-洪积扇区硝酸盐污染途径及形成机理分析[J].中国地质灾害与防治学报,199,4(4):96-99.
[27] 河北省水利厅.河北省水资源公报(2009-2021)[R].河北省水利厅.
[28] 李金娜,石素兰,赵晓英,等.张家口坝上地区地下水采补平衡的策略研究[J].张家口职业技术学院学报,2017,30(04):31-33.
[29] 张晓烨,方彦舒.张家口市地下水超采现状及综合治理[J].河北水利,2018,286(12):38-39.
[30] 赵玉峰,罗专溪,于亚军,等.京津冀西北典型区域地下水位时空演变及驱动因素[J].自然资源学报,2020,35(06):43-55.
[31] FOLEY J A, DEFRIES R, ASNER G P, et al.Global Consequences of Land Use[J].Science, 2005, 309(5734):570-574.
[32] WADA Y, BEEK L P H V, BIERKENS M F P.Nonsustainable groundwater sustaining irrigation:A global assessment[J].Water Resources Research, 2012, 48(6).
[33] WADA Y, WISSER D, EISNER S, et al.Multimodel projections and uncertainties of irrigation water demand under climate change[J].Geophysical Research Letters, 2013, 40(17):4626-4632.
[34] BÖHLKE J K.Groundwater recharge and agricultural contamination[J].Hydrogeology Journal.2002, 10(1):153-179.
[35] SCANLON B R, GATES J B, REEDY R C, et al.Effects of irrigated agroecosystems:2.Quality of soil water and groundwater in the southern High Plains, Texas[J].Water Resources Research, 2010, 46(9):1-14.
[36] RUSSO D, LAUFER A, GERSTL Z, et al.On the mechanism of field-scale solute transport:Insights from numerical simulations and field observations[J].Water Resources Research, 2014, 50(9):7484-7504.
[37] 李改梅,张国新.张家口市饮用水水源保护区现状及保护对策[J].地下水,2015,37(6):91-92.
[38] 王彦芳,裴宏伟.1980--2015年河北坝上地区生态环境状况评价与对策研究[J].生态经济,2018,34(1):186-190.
[39] 苏伟杰.张家口内陆平原区地下水资源及其特征[J].安徽农业科学,2017,45(13):44-45.
[40] 李予红,宋晓光,胡斌,等.张家口坝上地区高氟地下水分布与成因分析[J].北京师范大学学报(自然科学版),2021,1-11.
[41] JIANG W J, SHENG Y Z, LIU H W, et al.Groundwater quality assessment and hydrogeochemical processes in typical watersheds in Zhangjiakou region, northern China[J].Environmental Science and Pollution Research, 2021.
[42] 韩双宝,李甫成,马涛,等.燕山-太行山连片扶贫区1/5万水文地质调查二级项目成果报告[R].中国地质调查局水文地质环境地质调查中心,2019.
[43] 耿昕,刘伟朋,任政委,等.京津唐张交通廊道规划建设区1/5万环境地质调查二级项目成果报告[R].中国地质调查局水文地质环境地质调查中心,2019.
-
计量
- 文章访问数: 26
- PDF下载数: 6
- 施引文献: 0