Geochemical characteristics and tectonic implications of the Neoproterozoic A-type granites in Red Sea State, Sudan
-
摘要: 苏丹红海州位于努比亚地盾,本文在该地厘定出一套新元古代花岗岩,由中粗粒-中细粒正长花岗岩、中细粒碱长花岗岩组成,LA-ICP-MS 定年结果显示,岩体形成于713±4 Ma,属于泛非造山事件的产物。花岗岩SiO2含量较高,为70.80%~77.83%,A/CNK 为0.94~1.08,A/NK 为1.12~1.44,为准铝质-弱过铝质花岗岩。花岗岩具有相似的稀土元素和微量元素配分模式,稀土配分模式呈右倾V 字形曲线,轻重稀土分异中等(LREE/HREE=2.46~7.13),δEu为0.30~0.57,负铕异常中等-强烈。富含大离子亲石元素Th、U、K和高场强元素Zr、Hf,亏损高场强元素Nb、Ta、Sr、P和Ti。花岗岩具有低ISr比值、亏损εNd(t)值和εHf(t)值,TDM1与TDM2值较为一致。岩体为A2型花岗岩,形成于俯冲阶段弧后拉张环境,因弧后伸展减薄导致软流圈物质上涌,明显的升温、减压促使新生地壳部分熔融。Abstract: The Red Sea State of Sudan is located in the Nubian shield.A series of Neoproterozoic granites are identified in the Red Sea State, which consist of medium-coarse-and medium-fine-grained syenogranites and middle-fine-grained alkli feldspar granites.Zircon U-Pb dating implies the granites are intruded in 713 ±4 Ma, which are formed in Pan-African orogenic event.They show high SiO2 contents (70.80%~77.83%).They are metaluminous or weak peraluminous with A/CNK ratios of 0.94~1.08 and A/NK ratios of 1.12~1.44.They show the similar Chondrite-normalized REE and multi-trace elements patterns.The REE patterns are rightinclined with REE medium differentiations of LREE/HREE ratios of 2.46~7.13 and display“V”shaped curve and medium to strong Eu anomaly with δEu values of 0.30~0.57.The granites are characterized by the enrichment of large ion lithophile elements (LILEs) such as Th, U, K and high field-strength elements (HFSEs)such as Zr, Hf and by the depleted Nb, Ta, Sr, P and Ti contents.They show low ISr ratios, depleted εNd(t), εHf(t)values and the similar TDM1 and TDM2 values.The granites chemically show A2-type affinity.We propose that the 713 Ma A-type magmatism might be driven by upwelling of asthenosphere and subsequent partial melts of juvenile crust of Nubian shield on conditions of obvious Heating and decompression in a back-arc extensional setting.
-
-
[1] 魏浩,徐九华,王建雄,等.非洲东北部阿拉伯-努比亚地盾(ANS)构造演化与金成矿作用[J].地质与勘探,2015,51(2):383-394.
[2] ORIOLO S, OYHANTÇABAL P, WEMMER K, et al.Contemporaneous assembly of Western Gondwana and final Rodinia break-up: Implications for the supercontinent cycle[J].Geoscience Frontiers,2017.
[3] KENNEDY W Q.The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode[J].In: Leeds University Research Institute for African, 1964, 8:48-49.
[4] KRÖNER.Late Precambrian plate tectonics and orogeny: a need to redefine the term Pan-African[J].In: Klerkx, J., Michot, J.(Eds.), African Geology.Royal, 1984:23-28.
[5] STERN R J.Arc assebly and continental collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J].Annual Review of Earth and Planetary Sciences, 1994, 22:319-351.
[6] ORIOLO S, OYHANT ÇABAL P, WEMMER K, et al.Contemporaneous assembly of Western Gondwana and final Rodinia break-up: Implications for the supercontinent cycle[J].Geoscience Frontiers, 2017.
[7] EVUK D, FRANZ G, FREI D, et al.The Neoproterozoic evolution of the central-eastern Bayuda Desert (Sudan)[J].Precambrian Research, 2014, 240:108-125.
[8] FROST B R, BARNES C G, COLLINS W J, et al.A Geochemical Classification for Granitic Rocks[J].Journal Of Petrology, 2001, 42:2033-2048.
[9] SUN S S, MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345.
[10] WOLF M B, LONDON D.Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanisms[J].Geochimica Et Cosmochimica Acta, 1994, 58(19):4127-4145.
[11] CHAPPELL B W.Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46(3):535-551.
[12] 周佐民.碱质A 型花岗岩的判别、成因与构造环境[J].华南地质与矿产,2011,27(3):215-220.
[13] BONIN B.A-type granites and related rocks:Evolution of a concept, problems and prospects[J].Lithos, 2007, 97(1-2):1-29.
[14] EBY G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J].Geology.1992, 20:641-644.
[15] WHALEN J B, CURRIE K L, CHAPPELL B W.A-type granites: geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987, 95(4):407-419.
[16] COLLINS W J, BEAMS S D, WHITE A J R, et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology, 1982, 80(2):189-200.
[17] CREASER R A, PRICE R C, WORMALD R J.A-type granites revisited: Assessment of a residual-source model[J].Geology, 1991, 19(2):163.
[18] LOISELLE M C, WONES D R.Characteritics and origin of anorogenic granites[J].Geolosical society of American Bulletin(Abstracts with Programs), 1979, 11:468.
[19] MINGRAM B, TRUMBULL R B, LITTMAN S, et al.A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:evidence for mixing of crust and mantle-derived components[J].Lithos, 2000, 54(1):1-22.
[20] LITVINOVSKY B A, JAHN B, ZANVILEVICH A N, et al.Crystal fractionation in the petrogenesis of an alkali monzodiorite -syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia[J].2002, 64:97-130.
[21] TURNER S P, FODEN J D, MORRISON R S.Derivation of some A2 type magmas by fractionation of basaltic magma:An example from the Pathaway Ridge, South Australia[J].Lithos, 1992, 28:151-179.
[22] FROST C D, FROST B R, CHAMBERLAIN K R, et al.Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite[J].Journal of Petrology, 1999, 40(12):1771-1802.
[23] 赵振华,王中刚,邹天人,等.新疆乌伦古富碱侵入岩成因探讨[J].地球化学,1996,25(3):205-220.
[24] ANDERSON L J, BENDER E E.Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America[J].Lithos, 1989, 23:19-52.
[25] RÄMÖ O T, MCLEMORE V T, HAMILTON M A, et al.Intermittent 1630-1220 Ma magmatism in central Mazatzal province:New geochronologic piercing points and some tectonic implications[J].Geology, 2003, 31(4):335.
[26] YANG J H, WU F Y, CHUNG S L, et al.A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos, 2006, 89(1-2):89-106.
[27] 王德滋,周新民.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[J].北京:科学出版社,2002:160-188.
[28] SISSON T W, RATAJESKI K, HANKINS W B, et al.Voluminous granitic magmas from common basaltic sources[J].Contributions to Mineralogy and Petrology, 2005, 148(6):635-661.
[29] LITVINOVSKY B A, JAHN B M, EYAL M.Mantle-derived sources of syenites from the A-type igneous suites -New approach to the provenance of alkaline silicic magmas[J].Lithos, 2015, 232:242-265.
[30] 任军平,王杰,古阿雷,等.赞比亚东北部正长花岗岩的锆石U-Pb 年龄和Lu-Hf 同位素特征[J].地质调查与研究,2019,42(3):161-165.
[31] SUN K, ZHANG L L, ZHAO Z D, et al.Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions[J].China Geology, 2018, 1(2):210-224.
[32] 吴兴源,刘晓阳,任军平,等.坦桑尼亚Panda 山碳酸岩地球化学特征及岩石成因研究进展[J].地质调查与研究,2019,42(2):86-95.
[33] ALI K A, MOGHAZI A M, MAURICE A E, et al.Composition, age, and origin of the-620 Ma Humr Akarim and Humrat Mukbid A-type granites: No evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt[J].International Journal of Earth Sciences, 2012, 101:1705-1722.
[34] EBY G N.The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos, 1990, 26(1-2):115-134.
[35] 吴锁平,王梅英,戚开静.A 型花岗岩研究现状及其述评[J].岩石矿物学杂志,2007,(1):57-66.
[36] 贾小辉,王强,唐功建.A 型花岗岩的研究进展及意义[J].大地构造与成矿学,2009,33(3):465-480.
[37] 李小伟,莫宣学,赵志丹,等.关于A 型花岗岩判别过程中若干问题的讨论[J].地质通报,2010,(Z1):278-285.
[38] MILANI L, LEHMANN J, NAYDENOV K V, et al.A-type magmatism in a syn-collisional setting:The case of the Pan-African Hook Batholith in Central Zambia[J].Lithos, 2015, 216-217:48-72.
[39] ABDELSALAM M G, STERN R J.Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR radar:The Neoproterozoic Keraf Suture, NE Sudan[J].Journal of Geophysical Research: Planets, 1996, 101(E10): 23063-23076.
[40] DOBRETSOV N L, BUSLOV M M, VERNIKOVSKY V A.Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia[J].Gondwana Research, 2003, 6(2):143-159.
[41] KHAIN E V, BIBIKOVA E V, SALNIKOVA E B, et al.The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions[J].Precambrian Research, 2003, 122(1):329-358.
[42] 赵凯,姚华舟,王建雄,等.厄立特里亚Koka 花岗岩锆石U-Pb年代学、地球化学特征及其地质意义[J].地球科学,2020,45(1):156-167.
-
计量
- 文章访问数: 78
- PDF下载数: 5
- 施引文献: 0