Geochemical characteristics and tectonic environment of Late Ordovician intrusive rocks in Suanjingzi, Beishan area, Inner Mongolia
-
摘要: 本文报道了北山造山带蒜井子晚奥陶世花岗岩的LA-ICP-MS 锆石U-Pb 年龄与全岩地球化学,以探讨其形成时代、岩石成因及构造环境。蒜井子二长花岗岩LA-ICP-MS 锆石U-Pb 定年结果显示其形成于456.3±3.5 Ma。英云闪长岩具有低的SiO2(61.99%~66.62%)、ALK(4.66%~5.16%)、K2O/Na2O(0.52~0.64)和A/CNK 为0.89~1.05,而二长花岗岩具有高的SiO2(71.93%~73.20%)、ALK(6.44%~6.89%)、K2O(K2O/Na2O 为1.32~1.94)和A/CNK(1.04~1.05),低的A/NK(1.49~1.64)。该岩体富集轻稀土(LREEs)和大离子亲石元素(LILE)Rb、Th、K,亏损重稀土元素(HREEs)和高场强元素Nb、Ta、Ti,具有弱的负Eu 异常。上述特征表明,研究区晚奥陶世花岗岩具有准铝质-弱过铝质钙碱性岩石的特征,属于高分异I型花岗岩,岩浆源区以壳源物质为主,有少量幔源物质的加入,形成的构造环境为岛弧。结合区域地质背景,认为北山洋在456.3±3.5 Ma之前已开始向北俯冲。Abstract: In this paper, LA-ICP-MS zircon U-Pb age and whole rock geochemistry of Suanjingzi late Ordovician granite in Beishan orogenic belt are reported to discuss its formation age, petrogenesis and tectonic setting. LAICP-MS zircon U-Pb data from the monzogranite show that it was formed at 456.3±3.5Ma.The tonalite have low SiO2, ALK, K2O/Na2O and A/CNK, ranging from 61.99% to 66.62%, 4.66% to 5.16%, 0.52 to 0.64, and 0.89 to 1.05, respectively, while the monzogranite have higher SiO2 (71.93%~73.20%), ALK (6.44%~6.89%), K2O(K2O/Na2O 1.32~1.94)and A/CNK(1.04~1.05).These rocks are enriched in LREEs and LILE(e.g., Rb, Th and K), while depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti), with weak negative Eu anomaly. These above characteristics show that the rocks belong to metaluminium-weak peraluminous calc-alkaline high differentiation I- type granite, and their primary magma is dominated by crust-derived materials with a small amount of mantlederived materials, formed under the tectonic setting of island arc in late Ordovician. Combining with regional geologic background, we propose that the Beishan Ocean have began to subduct northward before 456.3±3.5 Ma.
-
Key words:
- Beishan area /
- Late Ordovician granite /
- geochemistry /
- tectonic environment /
- Suanjingzi area
-
-
[1] 何世平,任秉琛,姚文光,等.甘肃内蒙古北山地区构造单元划分[J].西北地质,2002,35(4):30-40.
[2] 龚全胜,刘明强,梁明宏,等.北山造山带大地构造相及构造演化[J].西北地质,2003,(01):11-17.
[3] 左国朝,何国琦.北山地区板块构造及成矿规律[M].北京:北京大学出版社,1990,152-166.
[4] 左国朝,刘义科,刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报,2003,12(1):1-15.
[5] 刘雪亚,王荃.中国西部北山造山带大地构造及其演化[J].地学研究,1995,28:37-48.
[6] 邵积东.内蒙古大地构造分区及其特征[J].内蒙古地质,1998,2:1-23.
[7] 杨合群,李英,赵国斌,等.北山蛇绿岩特征及构造属性[J].西北地质,2010,43(1):26-36.
[8] 胡新茁,赵国春,胡新悦,等.内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J].地质通报,2015,(2):425-436.
[9] 孟庆涛,徐翠,张正平,等.内蒙古北山地区阿民乌苏蛇绿岩的年代学、地球化学及大地构造意义[J].地质与勘探,2021,57(1):122-135.
[10] 杨合群,赵国斌,李英,等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报,2012,31(2/3), 413-421.
[11] 武鹏,王国强,李向民,等.甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义[J].地质通报,2012,(12):2032-2037.
[12] 李向民,余吉远,王国强,等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS 锆石U-Pb 测年及其地质意义[J].地质通报,2012,31(12):2025-2031.
[13] 余吉远,李向民,王国强,等.甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS 锆石U-Pb 年龄及地质意义[J].地质通报,2012,31(12):2038-2045.
[14] 赵茹石,周振环,毛金海,等.甘肃省板块构造单元划分及其构造演化[J].中国区域地质,1994,1:28-36.
[15] 魏志军,黄增保,金霞,等.甘肃红石山地区蛇绿混杂岩地质特征[J].西北地质,2004,37(2):13-18.
[16] 黄增保,金霞.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J].中国地质,2006,(05):1030-1037.
[17] 刘雪亚,王荃.中国西部北山造山带的大地构造及其演化[J].地学研究,1995,(28):37-48.
[18] 潘桂堂,陆松年,肖庆辉,等.中国大地构造阶段划分和演化[J].地学前缘,2016,23(6):1-23.
[19] 卢进才,牛亚卓,魏仙样,等.北山红石山地区晚古生代火山岩LA-ICP-MS 锆石U-Pb 年龄及其构造意义[J].岩石学报,2013,29(8):2685-2694.
[20] 张正平,辛后田,程海峰,等.内蒙古北山造山带发现额勒根蛇绿岩-红石山-百合山蛇绿岩带东延的证据[J].地质通报,2020,39(9):1389-1403.
[21] 王国强,李向民,徐学义,等.甘肃北山红石山蛇绿岩锆石U-Pb 年代学研究及构造意义[J].岩石学报,2014,30(6):1685-1694.
[22] 彭湘萍,陈高潮,李玉宏,等.北山地区红石山蛇绿混杂岩组成及地质意义[J].新疆地质,2016,34(2):184-191.
[23] 谢春林,杨建国,王立社,等.甘肃北山地区古亚洲洋南缘古生代岛弧带位置的讨论[J].地质学报,2009,83(11):1584-1599.
[24] 程先钰,田健,李以科,等.董阿拉善右旗特拜金矿赋矿变沉积岩地球化学特征、源区属性及构造意义[J].华北地质,2023,46(1):42-60.
[25] 田健,段霄龙,程先钰.北山造山带中部晚志留世-早泥盆世侵入岩源区特征及其反映的陆壳增生机制[J].华北地质,2020,43(3):207-223.
[26] 付超,李俊建,张帅,等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质.2023,46(1):1-19.
[27] 张正平,段炳鑫,孟庆涛,等.内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS 锆石U-Pb 定年及其地质意义[J].地质与勘探,2017,53(6):1129-1139.
[28] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. In: Saunders A D, Norry M J, eds.Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42:313-345.
[29] 李怀坤,耿建珍,郝爽,等.用激光烧蚀法多接收器等离子质谱仪(LA-MC-ICPMS)测定锆石U-Pb 同位素年龄的研究[J].矿物学报,2009,28(增刊):600-601.
[30] ANDERSON T. Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology, 2002, 192(1/2):59-79.
[31] CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46:535-551.
[32] WU F Y, JAHN B M, WILDE S A, et al.Highly fractionated I-type granites in NE China(I):geochronology and petrogenesis[J].Lithos, 2003, 66(3/4):241-273.
[33] TAYLOR S R.Mclennan S M. The Continental Crust: Its Composition and Evolution [M]. London:Blackwell, 1985, 57-72.
[34] PEARCE J A. Trace element characteristics of lavas from destructive plate boundarie[J]. In: Thorpe RS (ed).Andesites.Chishester:Wiley, 1982, 525-548.
-
计量
- 文章访问数: 37
- PDF下载数: 2
- 施引文献: 0