Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater
-
摘要: 本文旨在探讨利用稳定同位素手段揭示高氟地下水的起源、循环和演化过程,通过收集和整理已有的相关研究成果,对氢氧同位素、锶钙同位素和锂硼同位素在高氟地下水研究中的应用进行综述。研究发现,地下水中的δ2H 和δ18O 值可以确定水的来源和混合过程,并进而识别高氟地下水的潜在来源。锶钙同位素在高氟地下水研究中备受关注,通过获取地下水中的87Sr/86Sr比值和δ44/40Ca,可以揭示矿物风化溶解、阳离子交换、次生矿物相沉淀等水文地球化学过程,对于理解高氟地下水的形成机制和演化过程至关重要。另外,锂硼同位素也是研究高氟地下水的重要工具之一,通过测量δ7Li和δ11B值,可以判断地热流体对深层高氟地下水的影响。综上所述,稳定同位素在高氟地下水研究中具有广泛应用前景。通过测量氢氧同位素、锶钙同位素和锂硼同位素,我们可以深入了解高氟地下水的起源、循环和演化过程,从而为高氟地下水治理和水资源管理提供科学依据,为制定相应的防治措施和保障人类健康提供重要支持。Abstract: This article aims to explore the use of stable isotopic techniques in elucidating the origin, cycling and evolution processes of high fluoride groundwater. By collecting and synthesizing relevant research findings, a comprehensive review is conducted concerning the utilization of hydrogen and oxygen isotopes, strontiumcalcium isotopes, and lithium-boron isotopes in the investigation of high F- groundwater within subterranean environments.The research reveals that δ2H and δ18O values in groundwater can be utilized to identify the sources and mixing processes of water, thereby identifying potential sources of high fluoride groundwater. Of particular interest in the investigation of high fluoride groundwater is the use of strontium-calcium isotopes.By determining the 87Sr /86Sr ratio and δ44/40Ca in groundwater, hydrogeochemical processes such as mineral weathering dissolution, cation exchange, and secondary mineral precipitation can be elucidated, crucial for understanding the formation and evolution mechanisms of high fluoride groundwater.Additionally, lithium-boron isotopes serve as important tools in the study of high fluoride groundwater. Measurements of δ7Li and δ11B allow for the assessment of the influence of geothermal fluids on deep-seated high fluoride groundwater. In conclusion, stable isotopes hold immense potential in high fluoride groundwater research. By measuring deuterium-oxygen isotopes, strontium-calcium isotopes, and lithium-boron isotopes, we can gain profound insights into the origin, cycling, and evolution processes of high fluoride groundwater, thus providing a scientific basis for its management and water resource conservation. This research also offers crucial support for the development of appropriate prevention and control measures, ultimately safeguarding human health.
-
-
[1] W H O.Guidelines for drinking-water quality. Fourth edition incorporating the first addendum[S].Geneva, 2017.
[2] BATABYAL A K, GUPTA S. Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: Interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis[J].Environmental Monitoring and Assessment, 2017, 189(8):369.
[3] ALVAREZ M, CAROL E. Geochemical occurrence of arsenic, vanadium and fluoride in groundwater of Patagonia, Argentina: Sources and mobilization processes[J].Journal of South American Earth Sciences, 2019, 89:1-9.
[4] JIA Y, XI B, JIANG Y, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of The Total Environment, 2018, 643, 967-993.
[5] PETER B M, CRAIG J B, TYLER D J, et al.Fluoride occurrence in United States groundwater[J]. Science of The Total Environment, 2020, 732:139217.
[6] 何锦,张福存,韩双宝,等.中国北方高氟地下水分布特征和成因分析[J].中国地质,2010(3):621-626.
[7] 苗晋杰,刘宏伟,郭旭等.平原区承压水上部弱透水层对NH4+、NO3-的阻滞能力分析研究-以北京市通州区为例[J].华北地质,2022,45(3):62-68.
[8] 张卓,陈社明,柳富田,等.滨海平原区深层高氟地下水富集机理:以滦河三角洲为例[J].现代地质,2023,37(4):1-10.
[9] 张卓,柳富田,陈社明,等.滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J].中国地质,2023,50(3):1-10.
[10] 蒋万军, 孟利山, 柳富田, 等.张家口地区地下水资源与环境质量现状及开发利用保护建议[J].华北地质,2022,45(3):44-54.
[11] FUGE R.Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100:393-406.
[12] WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2020, 2:1-39.
[13] FANTONG W Y, SATAKE H, AYONGHE S N, et al. Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: Implications for incidence of fluorosis and optimal consumption dose[J]. Environmental Geochemistry and Health, 2010, 32(2):147-163.
[14] YIDANA S M, BANOENG YAKUBO B, AKABZAA T M.Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin[J]. Journal of African Earth Sciences, 2010, 58(2):220-234.
[15] DONG S, LIU B, SHI X, et al. The spatial distribution and hydrogeological controls of fluoride in the confined and unconfined groundwater of Tuoketuo County, Hohhot, Inner Mongolia, China[J].Environmental Earth Sciences, 2015, 74(1):325-335.
[16] CHOWDHURY A, ADAK M, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J].Journal of Hydrology, 2019, 574:333-359.
[17] 成世才,荣晓伟,于明光.济南市先行区浅层地下水中氟地球化学特征及成因分析[J].中国煤炭地质,2022,34(05):43-49.
[18] EDMUNDS W M, SMEDLEY P L.Fluoride in natural waters. In O. Selinus (ed.) Essentials of medical geology:Revised edition[M]. Dordrecht: Springer Netherlands. 2013, pp:311-336.
[19] RANGO T, BIANCHINI G, BECCALUVA L, et al. Hydrogeochemical study in the Main Ethiopian Rift: New insights to the source and enrichment mechanism of fluoride[J]. Environmental Geology, 2009, 58(1):109-118.
[20] GUO H, ZHANG Y, XING L, et al.Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia[J].Applied Geochemistry, 2012, 27:2187-2196.
[21] 孟春霞,郑西来,王成见.平度市高氟地下水分布特征及形成机制研究[J]. 中国海洋大学学报(自然科学版),2019,49(11):111-119.
[22] MUKHERJEE I, SINGH U K. Groundwater fluoride contamination, probable release, and containment mechanisms:A review on Indian context[J]. Environmental Geochemistry and Health, 2018, 40(6), 2259-2301.
[23] 孔晓乐,王仕琴,赵焕,等.华北低平原区地下水中氟分布特征及形成原因:以南皮县为例[J].环境科学,2015,36(11):4051-4059.
[24] 毛若愚,郭华明,贾永锋,等.内蒙古河套盆地含氟地下水分布特点及成因[J].地学前缘,2015,22(2):260-268.
[25] VITHANAGE M, BHATTACHARYA P.Fluoride in the environment:Sources, distribution and defluoridation[J].Environmental Chemistry Letters, 2015, 13(2):131-147.
[26] CLARK I, FRITZ P.Environmental Isotopes in Hydrogeology[M].Lewis Publishers, New York, 1997.
[27] 方成,柳富田,孟利山,等.氢氧同位素在曹妃甸地区水循环研究中的应用[J].地质调查与研究,2014,37(2):102-107.
[28] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133:1702-1703.
[29] PANG Z, KONG Y, LI J, et al. An Isotopic Geoindicator in the Hydrological Cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-537.
[30] ZHANG Z, GUO H, ZHAO W, et al. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China[J].Hydrogeology Journal, 2018, 26:1499-1512.
[31] MARTINS V, PINO D, BERTOLO R, et al. Who to blame for groundwater fluoride anomaly in São Paulo, Brazil? Hydro-geochemistry and isotopic evidence[J]. Applied Geochemistry, 2018, 90:25-28.
[32] LI P, HE X, LI Y, et al. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau:A Case Study of Tongchuan, Northwest China[J].Exposure and Health, 2019, 11:95-107.
[33] PARVAIZ A, KHATTAK J A, HUSSAIN I, et al. Salinity enrichment, sources and its contribution to elevated ground-water arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope (δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710.1-115710.13.
[34] SU C, WANG Y, XIE X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Processes& Impacts, 2015, 17(4):791-801.
[35] YAN J, CHEN J, ZHANG W, et al. Determining fluoride distribution and influencing factors in groundwater in Songyuan, Northeast China, using hydrochemical and isotopic methods[J]. Journal of Geochemical Exploration, 2020, 217:106605.1-106605.10.
[36] BARBIERI M. Isotopes in hydrology and hydrogeology[J].Water, 2019, 11(2):291.
[37] YADAV K K, KUMAR S, PHAM Q B, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater:A comprehensive review[J].Ecotoxicology and Environmental Safety, 2019, 182:109362.1-109362.23.
[38] HARRINGTON G A, HERCZEG A L. The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios[J]. Chemical Geology, 2003, 199(3-4):281-292.
[39] SHAND P, DARBYSHIRE D P F, LOVE A J, et al. Sr isotopes in natural waters:Applications to source characterisation and water-rock interaction in contrasting landscapes[J].Applied Geochemistry, 2009, 24(4):574-586.
[40] 李小倩,周爱国,刘存富,等.河北平原深层地下水中氟含量与锶同位素组成的关系研究[J].水文,2008(04):38-42.
[41] GRIFFITH E M, SCHMITT A D, ANDREWS M G, et al.Elucidating modern geochemical cycles at local, regional, and global scales using calcium isotopes[J]. Chemical Geology, 2020, 534:1-13.
[42] HOLMDEN C, PAPANASTASSIOU D A, BLANCHON P, et al.δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments[J]. Geochimica et Cosmochimica Acta, 2012, 83:179-194.
[43] MOORE J, JACOBSON A D, HOLMDEN C. Tracking the relationship between mountain uplift, silicate weathering, and long-term CO2 consumption with Ca isotopes: Southern Alps, New Zealand[J]. Chemical Geology, 2013, 341: 110-127.
[44] Hindshaw R S, Bourdon B, Pogge Von Strandmann P A E, et al. The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland[J].Earth and Planetary Science Letters, 2013, 374:173-184.
[45] BRAZIER J M, SCHMITT A D, GANGLOFF S, et al.Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite) [J]. Geochimica et Cosmochimica Acta, 2019, 250:324-347.
[46] OCKERT C, GUSSONE N, KAUFHOLD S, et al. Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochimica et Cosmochimica Acta, 2013, 112:374-388.
[47] GUSSONE N, FILIPSSON H L, KUHNERT H. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls[J].Geochimica et Cosmochimica Acta, 2016, 173:142-159.
[48] HAROUAKA K, MANSOR M, MACALADY J L, et al.Calcium isotopic fractionation in microbially mediated gypsum precipitates[J]. Geochimica et Cosmochimica Acta, 2016, 184:114-131.
[49] GODFREY LV, HERRERA C, GAMBOA C, et al. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile[J]. Chemical Geology, 2019, 518:32-44.
[50] YUAN J, XU F, ZHENG T. The genesis of saline geothermal groundwater in the coastal area of Guangdong Province:Insight from hydrochemical and isotopic analysis[J]. Journal of Hydrology, 2022, 605:127345.
[51] WIMPENNY J, COLLA C A, YU P, et al. Lithium isotope fractionation during uptake by gibbsite [J]. Geochimica et Cosmochimica Acta, 2015, 168:133-150.
[52] ALVAREZ-AMADO F, TARDANI D, POBLETE-GONZA LEZ C, et al. Hydrogeochemical processes controlling the water composition in a hyperarid environment: New insights from Li, B, and Sr isotopes in the Salar de Atacama[J].Science of the Total Environment, 2022, 835, 155470.
[53] WANNER C, BUCHER K, POGGE VON STRANDMANN P A E, et al. On the use of Li isotopes as a proxy for waterrock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel[J].Geochimica et Cosmochimica Acta, 2017, 198:396-418.
[54] HINDSHAW R S, TOSCA R, GOÛT T L, et al.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta, 2019, 250:219-237.
[55] MILLOT R, GUERROT C, INNOCENT C, et al. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin[J].Chemical Geology, 2011, 283:226-241.
[56] MURPHY M J, PORCELLI D, POGGE VON STRANDMANN P A E, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 245:154-171.
[57] ZHANG W, TAN H, ZHANG Y, et al. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation[J]. Applied Geochemistry, 2015, 63:436-445.
[58] SAFFER D M, KOPF A J. Boron desorption and fractionation in subduction zone fore arcs: Implications for the sources and transport of deep fluids[J]. Geochemistry Geophysics Geosystems, 2016, 17(12):4992-5008.
[59] MAO H R, LIU C Q, ZHAO Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190:439-459.
-
计量
- 文章访问数: 17
- PDF下载数: 2
- 施引文献: 0