氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用

张卓, 柳富田, 陈社明. 2023. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质, 46(3): 49-56. doi: 10.19948/j.12-1471/P.2023.03.07
引用本文: 张卓, 柳富田, 陈社明. 2023. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质, 46(3): 49-56. doi: 10.19948/j.12-1471/P.2023.03.07
ZHANG Zhuo, LIU Futian, CHEN Sheming. 2023. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater. North China Geology, 46(3): 49-56. doi: 10.19948/j.12-1471/P.2023.03.07
Citation: ZHANG Zhuo, LIU Futian, CHEN Sheming. 2023. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater. North China Geology, 46(3): 49-56. doi: 10.19948/j.12-1471/P.2023.03.07

氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用

  • 基金项目:

    国家自然基金委青年基金项目“基于多种同位素分析的滨海平原区地下水氟富集机理研究(42102298)”;中国地质调查局项目“海河流域水文地质与水资源调查监测(DD20230426)”;“西北内陆盆地典型地区水文地质与水资源调查监测(DD20230431)”

详细信息
    作者简介: 张卓(1991-),男,博士,助理研究员,水文地质学专业,主要从事水文地球化学研究;E-mail: hydro_zhangzhuo@163.com;
    通讯作者: 柳富田(1980-),男,博士,教授级高工,水文学及水资源专业,主要从事同位素水文地质研究,E-mail:5572827@qq.com
  • 中图分类号: P641.3;X523

Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high-fluoride groundwater

More Information
    Corresponding author: LIU Futian
  • 本文旨在探讨利用稳定同位素手段揭示高氟地下水的起源、循环和演化过程,通过收集和整理已有的相关研究成果,对氢氧同位素、锶钙同位素和锂硼同位素在高氟地下水研究中的应用进行综述。研究发现,地下水中的δ2H 和δ18O 值可以确定水的来源和混合过程,并进而识别高氟地下水的潜在来源。锶钙同位素在高氟地下水研究中备受关注,通过获取地下水中的87Sr/86Sr比值和δ44/40Ca,可以揭示矿物风化溶解、阳离子交换、次生矿物相沉淀等水文地球化学过程,对于理解高氟地下水的形成机制和演化过程至关重要。另外,锂硼同位素也是研究高氟地下水的重要工具之一,通过测量δ7Li和δ11B值,可以判断地热流体对深层高氟地下水的影响。综上所述,稳定同位素在高氟地下水研究中具有广泛应用前景。通过测量氢氧同位素、锶钙同位素和锂硼同位素,我们可以深入了解高氟地下水的起源、循环和演化过程,从而为高氟地下水治理和水资源管理提供科学依据,为制定相应的防治措施和保障人类健康提供重要支持。
  • 加载中
  • [1]

    W H O.Guidelines for drinking-water quality. Fourth edition incorporating the first addendum[S].Geneva, 2017.

    [2]

    BATABYAL A K, GUPTA S. Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: Interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis[J].Environmental Monitoring and Assessment, 2017, 189(8):369.

    [3]

    ALVAREZ M, CAROL E. Geochemical occurrence of arsenic, vanadium and fluoride in groundwater of Patagonia, Argentina: Sources and mobilization processes[J].Journal of South American Earth Sciences, 2019, 89:1-9.

    [4]

    JIA Y, XI B, JIANG Y, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of The Total Environment, 2018, 643, 967-993.

    [5]

    PETER B M, CRAIG J B, TYLER D J, et al.Fluoride occurrence in United States groundwater[J]. Science of The Total Environment, 2020, 732:139217.

    [6]

    何锦,张福存,韩双宝,等.中国北方高氟地下水分布特征和成因分析[J].中国地质,2010(3):621-626.

    [7]

    苗晋杰,刘宏伟,郭旭等.平原区承压水上部弱透水层对NH4+、NO3-的阻滞能力分析研究-以北京市通州区为例[J].华北地质,2022,45(3):62-68.

    [8]

    张卓,陈社明,柳富田,等.滨海平原区深层高氟地下水富集机理:以滦河三角洲为例[J].现代地质,2023,37(4):1-10.

    [9]

    张卓,柳富田,陈社明,等.滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J].中国地质,2023,50(3):1-10.

    [10]

    蒋万军, 孟利山, 柳富田, 等.张家口地区地下水资源与环境质量现状及开发利用保护建议[J].华北地质,2022,45(3):44-54.

    [11]

    FUGE R.Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100:393-406.

    [12]

    WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2020, 2:1-39.

    [13]

    FANTONG W Y, SATAKE H, AYONGHE S N, et al. Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: Implications for incidence of fluorosis and optimal consumption dose[J]. Environmental Geochemistry and Health, 2010, 32(2):147-163.

    [14]

    YIDANA S M, BANOENG YAKUBO B, AKABZAA T M.Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin[J]. Journal of African Earth Sciences, 2010, 58(2):220-234.

    [15]

    DONG S, LIU B, SHI X, et al. The spatial distribution and hydrogeological controls of fluoride in the confined and unconfined groundwater of Tuoketuo County, Hohhot, Inner Mongolia, China[J].Environmental Earth Sciences, 2015, 74(1):325-335.

    [16]

    CHOWDHURY A, ADAK M, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J].Journal of Hydrology, 2019, 574:333-359.

    [17]

    成世才,荣晓伟,于明光.济南市先行区浅层地下水中氟地球化学特征及成因分析[J].中国煤炭地质,2022,34(05):43-49.

    [18]

    EDMUNDS W M, SMEDLEY P L.Fluoride in natural waters. In O. Selinus (ed.) Essentials of medical geology:Revised edition[M]. Dordrecht: Springer Netherlands. 2013, pp:311-336.

    [19]

    RANGO T, BIANCHINI G, BECCALUVA L, et al. Hydrogeochemical study in the Main Ethiopian Rift: New insights to the source and enrichment mechanism of fluoride[J]. Environmental Geology, 2009, 58(1):109-118.

    [20]

    GUO H, ZHANG Y, XING L, et al.Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia[J].Applied Geochemistry, 2012, 27:2187-2196.

    [21]

    孟春霞,郑西来,王成见.平度市高氟地下水分布特征及形成机制研究[J]. 中国海洋大学学报(自然科学版),2019,49(11):111-119.

    [22]

    MUKHERJEE I, SINGH U K. Groundwater fluoride contamination, probable release, and containment mechanisms:A review on Indian context[J]. Environmental Geochemistry and Health, 2018, 40(6), 2259-2301.

    [23]

    孔晓乐,王仕琴,赵焕,等.华北低平原区地下水中氟分布特征及形成原因:以南皮县为例[J].环境科学,2015,36(11):4051-4059.

    [24]

    毛若愚,郭华明,贾永锋,等.内蒙古河套盆地含氟地下水分布特点及成因[J].地学前缘,2015,22(2):260-268.

    [25]

    VITHANAGE M, BHATTACHARYA P.Fluoride in the environment:Sources, distribution and defluoridation[J].Environmental Chemistry Letters, 2015, 13(2):131-147.

    [26]

    CLARK I, FRITZ P.Environmental Isotopes in Hydrogeology[M].Lewis Publishers, New York, 1997.

    [27]

    方成,柳富田,孟利山,等.氢氧同位素在曹妃甸地区水循环研究中的应用[J].地质调查与研究,2014,37(2):102-107.

    [28]

    CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133:1702-1703.

    [29]

    PANG Z, KONG Y, LI J, et al. An Isotopic Geoindicator in the Hydrological Cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-537.

    [30]

    ZHANG Z, GUO H, ZHAO W, et al. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China[J].Hydrogeology Journal, 2018, 26:1499-1512.

    [31]

    MARTINS V, PINO D, BERTOLO R, et al. Who to blame for groundwater fluoride anomaly in São Paulo, Brazil? Hydro-geochemistry and isotopic evidence[J]. Applied Geochemistry, 2018, 90:25-28.

    [32]

    LI P, HE X, LI Y, et al. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau:A Case Study of Tongchuan, Northwest China[J].Exposure and Health, 2019, 11:95-107.

    [33]

    PARVAIZ A, KHATTAK J A, HUSSAIN I, et al. Salinity enrichment, sources and its contribution to elevated ground-water arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope (δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710.1-115710.13.

    [34]

    SU C, WANG Y, XIE X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Processes& Impacts, 2015, 17(4):791-801.

    [35]

    YAN J, CHEN J, ZHANG W, et al. Determining fluoride distribution and influencing factors in groundwater in Songyuan, Northeast China, using hydrochemical and isotopic methods[J]. Journal of Geochemical Exploration, 2020, 217:106605.1-106605.10.

    [36]

    BARBIERI M. Isotopes in hydrology and hydrogeology[J].Water, 2019, 11(2):291.

    [37]

    YADAV K K, KUMAR S, PHAM Q B, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater:A comprehensive review[J].Ecotoxicology and Environmental Safety, 2019, 182:109362.1-109362.23.

    [38]

    HARRINGTON G A, HERCZEG A L. The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios[J]. Chemical Geology, 2003, 199(3-4):281-292.

    [39]

    SHAND P, DARBYSHIRE D P F, LOVE A J, et al. Sr isotopes in natural waters:Applications to source characterisation and water-rock interaction in contrasting landscapes[J].Applied Geochemistry, 2009, 24(4):574-586.

    [40]

    李小倩,周爱国,刘存富,等.河北平原深层地下水中氟含量与锶同位素组成的关系研究[J].水文,2008(04):38-42.

    [41]

    GRIFFITH E M, SCHMITT A D, ANDREWS M G, et al.Elucidating modern geochemical cycles at local, regional, and global scales using calcium isotopes[J]. Chemical Geology, 2020, 534:1-13.

    [42]

    HOLMDEN C, PAPANASTASSIOU D A, BLANCHON P, et al.δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments[J]. Geochimica et Cosmochimica Acta, 2012, 83:179-194.

    [43]

    MOORE J, JACOBSON A D, HOLMDEN C. Tracking the relationship between mountain uplift, silicate weathering, and long-term CO2 consumption with Ca isotopes: Southern Alps, New Zealand[J]. Chemical Geology, 2013, 341: 110-127.

    [44]

    Hindshaw R S, Bourdon B, Pogge Von Strandmann P A E, et al. The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland[J].Earth and Planetary Science Letters, 2013, 374:173-184.

    [45]

    BRAZIER J M, SCHMITT A D, GANGLOFF S, et al.Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite) [J]. Geochimica et Cosmochimica Acta, 2019, 250:324-347.

    [46]

    OCKERT C, GUSSONE N, KAUFHOLD S, et al. Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochimica et Cosmochimica Acta, 2013, 112:374-388.

    [47]

    GUSSONE N, FILIPSSON H L, KUHNERT H. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls[J].Geochimica et Cosmochimica Acta, 2016, 173:142-159.

    [48]

    HAROUAKA K, MANSOR M, MACALADY J L, et al.Calcium isotopic fractionation in microbially mediated gypsum precipitates[J]. Geochimica et Cosmochimica Acta, 2016, 184:114-131.

    [49]

    GODFREY LV, HERRERA C, GAMBOA C, et al. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile[J]. Chemical Geology, 2019, 518:32-44.

    [50]

    YUAN J, XU F, ZHENG T. The genesis of saline geothermal groundwater in the coastal area of Guangdong Province:Insight from hydrochemical and isotopic analysis[J]. Journal of Hydrology, 2022, 605:127345.

    [51]

    WIMPENNY J, COLLA C A, YU P, et al. Lithium isotope fractionation during uptake by gibbsite [J]. Geochimica et Cosmochimica Acta, 2015, 168:133-150.

    [52]

    ALVAREZ-AMADO F, TARDANI D, POBLETE-GONZA LEZ C, et al. Hydrogeochemical processes controlling the water composition in a hyperarid environment: New insights from Li, B, and Sr isotopes in the Salar de Atacama[J].Science of the Total Environment, 2022, 835, 155470.

    [53]

    WANNER C, BUCHER K, POGGE VON STRANDMANN P A E, et al. On the use of Li isotopes as a proxy for waterrock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel[J].Geochimica et Cosmochimica Acta, 2017, 198:396-418.

    [54]

    HINDSHAW R S, TOSCA R, GOÛT T L, et al.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta, 2019, 250:219-237.

    [55]

    MILLOT R, GUERROT C, INNOCENT C, et al. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin[J].Chemical Geology, 2011, 283:226-241.

    [56]

    MURPHY M J, PORCELLI D, POGGE VON STRANDMANN P A E, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 245:154-171.

    [57]

    ZHANG W, TAN H, ZHANG Y, et al. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation[J]. Applied Geochemistry, 2015, 63:436-445.

    [58]

    SAFFER D M, KOPF A J. Boron desorption and fractionation in subduction zone fore arcs: Implications for the sources and transport of deep fluids[J]. Geochemistry Geophysics Geosystems, 2016, 17(12):4992-5008.

    [59]

    MAO H R, LIU C Q, ZHAO Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190:439-459.

  • 加载中
计量
  • 文章访问数:  17
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2023-07-06

目录