Study on distribution characteristics and influence factor of groundwater organic pollutants in coking industry based on logistic regression analysis
-
摘要: 焦化厂生产过程产生的多环芳烃等有机污染物对环境特别是对土壤和地下水造成严重危害。为了明确焦化企业在不同水文地质条件下,对地下水的影响程度,本文利用逻辑回归分析方法对河北某市25家焦化企业连续三年的地下水有机污染物监测数据进行分析研究,结果表明:(1)在300组地下水样品中检出率最高的指标为菲、芴、萘等二环芳烃,苯及氯代烃;(2)通过对企业污染源特征、入渗途径、水文地质条件、取样时间四大方面15个指标进行逻辑回归分析发现,焦化行业地下水中苯系物检出率的主要影响因素是企业所处水文地质单元,地下水水力坡度和水位埋深越小的区域,苯系物检出率越高;多环芳烃类污染物检出率与包气带中粘性土厚度成正相关;氯代烃污染与企业生产年限成正相关。本次研究成果结合焦化企业所在水文地质条件、生产工艺等特征可定性分析焦化场地地下水污染特征,也可用于指导新建焦化场地选址。Abstract: Organic pollutants such as Polycyclic aromatic hydrocarbon produced in the production process of coking plants cause serious harm to the environment, especially to soil and groundwater.In order to determine the degree of influence of coking enterprises on groundwater under different hydrogeological conditions, this article uses logistic regression analysis to analyze and study the monitoring data of organic pollutants in groundwater from 25 coking enterprises in a certain city of Hebei Province for three consecutive years.The results show that:(1)the indicators with the highest detection rate in 300 groups of groundwater samples are Phenanthrene, Fluorene, Naphthalene and other Polycyclic Aromatic Hydrocarbons, Benzene and Chlorinated hydrocarbons; (2)Through logistic regression analysis of 15 indicators including pollution source characteristics, infiltration pathways, hydrogeological conditions and sampling time, it was found that the main influencing factors for the detection rate of Benzene series compounds in groundwater in the coking industry are the hydrogeological unit in which the enterprise is located.In areas with small groundwater hydraulic slope and burial depth, the higher the detection rate of Benzene series compounds; The detection rate of Polycyclic Aromatic Hydrocarbon pollutants is positively correlated with the thickness of cohesive soil in the aeration zone; Chlorinated hydrocarbon pollution is positively correlated with the production years of enterprises.The research results can qualitatively analyze the groundwater pollution characteristics of coking sites based on the hydrogeological conditions and production processes of the coking enterprise, and can also be used to guide the selection of new coking site locations.
-
-
[1] 郝雅琼,周奇,杨玉飞,等.炼焦行业危险废物精准管控关键问题与对策[J].环境工程技术学报,2021,11(05):1004-1011.
[2] 楼春,钟茜.焦化厂场地土壤污染分布特征分析[J].中国资源综合利用,2019,37(04):177-179.
[3] 蒋慕贤,葛宇翔,郭赟.焦化场地典型污染物分布特征研究进展[J].环境与发展,2016,28(06):50-54.
[4] 贾晓洋,姜林,夏天翔,等.焦化厂土壤中PAHs的累积、垂向分布特征及来源分析[J].化工学报,2011,62(12):3525-3531.
[5] 张亦弛,于玲红,王培俊,等.某焦化生产场地典型污染物的垂向分布特征[J].煤炭学报,2012,37(7):1211-1218.
[6] 赵丹,廖晓勇,阎秀兰,等.不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J].环境科学,2011,32(3):849-856.
[7] 卢晓霞,李秀利,马杰,等.焦化厂多环芳烃污染土壤的强化微生物修复研究[J].环境科学,2011,32(3):864-869.
[8] 李合莲,陈家军,吴威,等.焦化厂土壤中多环芳烃分布特征及淋洗粒级分割点确定[J].环境科学,2011,32(4):1154-1158.
[9] 何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2015.
[10] CHENINI I, MSADDEK H M.Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical analysis[J].Quarterly Journal of Engineering Geology and Hydrogeology, 2020, 53(2), 167-175.
[11] PARK S, HAMM S, JEON H, et al.Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS[J].Sustainability, 2017, 9(7).
[12] OANH NGUYEN THI KIM, KETSIRI LEELASAKULTUM.Analysis of meteorology and emission in haze episode prevalence over mountain bounded region for early warning[J].Science of the Total Environment, 2011, 409(11): 2261-2271.
[13] LI X J, CHENG Z W, YU Q B, et al.Water quality prediction using multimodal support vector regression: case study of Jialing River,China[J].Journal of Environmental Engineering,2017,143(10):04017070.
[14] MOUIGNI BARAKA NAFOUANTI, JUNXIA LI, et al.Prediction on the fluoride contamination in groundwater at the Datong Basin, Northern China: Comparison of random forest, logistic regression and artificial neural network, Applied Geochemistry[J].Applied Geochemistry, 2021(132):105054.
[15] 张卓,柳富田,陈社明,等.滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J].中国地质,2023,50(03):887-896.
[16] 杨会峰,孟瑞芳,李文鹏,等.海河流域地下水资源特征和开发利用潜力[J].中国地质,2021,48(04):1032-1051.
[17] 张兆吉,费宇红,郭春艳,等.华北平原区域地下水污染评价[J].吉林大学学报(地球科学),2012,42(05):1456-1461.
[18] 侍玉苗.煤及煤与废塑料共热解焦炭气化过程中氯的变化规律与脱氯研究[D].山东科技大学,2007.
[19] 张千千,邢锦兵,王慧玮,等.河北省某大型焦化厂地下水中多环芳烃的污染特点、源解析及生态风险评价[J].环境科学,2023,44(02):807-815.
[20] 李立伟,傅大庆.某焦化厂地下水污染特征研究[J].资源信息与工程,2019,34(03):154-155.
[21] 陈旭东.唐山某焦化厂地下水污染规律研究[D].河北地质大学,2018.
[22] 王东.焦化场地地下水基础环境调查与评价[D].华北理工大学,2017.
[23] Lemeshow S, Hosmer D W.Applied Regression Analysis[M].New York:Wiley, 1989.
[24] Menard S.Applied Logistic Regression Analysis[M].Thousand Oaks, CA:Sage Publications, Inc., 2002.
[25] 马晋,何鹏,杨庆,等.基于回归分析的地下水污染预警模型[J].环境工程,2019,37(10):211-215.
[26] 田西昭,宫志强,袁子婷,等.冀东某在产焦化厂土壤和地下水特征污染物分布及成因分析[C]//中国环境科学学会环境工程分会.中国环境科学学会2021年科学技术年会--环境工程技术创新与应用分会场论文集(一).
[27] 刘磊,王宇峰,李凯琴,等.华北某焦化厂退役场地及其周边地下水环境调查与风险评估[J].科技创新导报,2019,16(16):128-134+136.
[28] 杜恒.焦化厂地块土壤污染状况分析[J].能源与环保,2022,44(04):45-51.
[29] 常允新,王振涛,秦鹏.莱芜市南冶拟建焦化项目对地下水环境影响分析[J].山东国土资源,2007(03):4-6+10.
[30] 王佩,蒋鹏,张华,等.焦化厂土壤和地下水中PAHs分布特征及其污染过程[J].环境科学研究,2015,28(05):752-759.
[31] 孟祥帅.我国北方某典型钢铁企业场地多环芳烃(PAHs)污染特征研究[D].中国地质大学(北京),2020.
-
计量
- 文章访问数: 30
- PDF下载数: 2
- 施引文献: 0