-
摘要: 【研究目的】海面上升,是渤海湾泥质海岸带地区全新世海陆变化最主要的影响因素。通过重建海面变化历史,有助于预测今后的变化趋势。【研究方法】全球基于实际调查的建模研究,恢复了过去数万年来较高分辨率的海面变化历史、分析了导致这种变化的各类分量的贡献。我们通过地区性相对海面变化研究,着重对地区性和区域性分量或做了定量评估、或进行了半定量推理分析,并做了具体的案例研究。【研究结果】这些研究表明,距今10~7 ka时全球海面平均上升速率是~9 mm/a,同期渤海湾西岸相对海面平均上升速率是~5.6 mm/a。这一较快的上升造成了包括渤海湾在内全球沿海平原海岸线后退(以及渤海海盆-渤海湾可能的数道沿岸堤被淹没)。但是,7 ka 至今,全球与冰融水等效海面(ice-equivalent sea level, ESL)的平均上升速率降至~0.64 mm/a;5 ka 以来,甚至不再上升。7 ka以来,渤海湾西岸相对上升速率是~0.46 mm/a;5.5 ka之后,进一步减弱到~0.18 mm/a。上述全球和渤海湾西岸海面变化,显示出明显的“二段式”上升特点。以~7 ka为转折点:之前与之后的上升速率相差一个数量级。对于渤海湾西岸而言,叠加在这个长达~7 000年的明显减速但仍缓慢上升背景上的,是均衡掀升分量与下沉(新构造下沉+沉积自压实下沉)分量的相互抵消。于是,全球性海面的缓慢上升、区域性均衡调整造成的掀升与局地下沉,这三者的复杂博弈,形成了长达~7 000年的、经常受高潮水影响的渤海湾西岸障壁岛型贝壳堤-潟湖盐沼洼地周期性交替的沿海地形地貌格局。1870 CE 至今的150 余年间,全球海面平均上升速率~1.7 mm/a,近10 余年来更加速至3.7 mm/a,渤海湾同时期I堤海岸线向海侧的前凸岸段平均蚀退1~3 km。【结论】我们推断1870CE以来的全球气温上升-海面上升与渤海湾同时期海岸线蚀退可能具因果关系。21世纪全球变暖及因此引起海面~6~8 mm/a上升的预测,是1870 CE至今全球加速升温-海面加速上升的必然延续。从地质学角度,这将导致渤海湾今后的“可容空间”逐步增加,为海岸线-潮间带蚀退、盐沼湿地退化提供条件,从而将可能导致持续了~7 000年的贝壳堤障壁岛-潟湖盐沼地貌过程的终止,转入与7 ka之前相似的海面上升加速时的沿岸堤-沿海低地模式。以上基于全球研究及渤海湾实际调查结果做出的推断,将对渤海湾泥质海岸带的中长期发展产生影响。
-
关键词:
- 历史海面变化 /
- 障壁岛型贝壳堤-潟湖盐沼过程终止 /
- 海面加速上升 /
- 可容空间增加 /
- 海岸线蚀退
Abstract: This paper is the result of Coast Geo-Environment.[Objective] Based on combination between the global sea level history and the reconstruction of the observed local Holocene relative sea level change, this research is aimed at revealing that the sea level change is the most important driving force controlling the land-sea change and morphological pattern transition and future coastal trend in the muddy coast of Bohai Bay, China.[Methods] Modelling effort has reconstructed high-resolution history of the global sea level change since the LGM (e.g., Lambeck et al., 2014; Peltier et al., 2015), and summarized contributions of various elements to the sea level change(e.g., Horton et al., 2018).On the other hand, as most coastal geologists, we scrutinized primarily the local and regional elements, which affected the relative sea level (RSL) behaviors in Bohai Bay coast, with quantitative or semi-quantitative estimates (Li et al., 2021; Wang, 2022)and more detailed case studies(Fan et al., 2005; Wang et al., 2020; Tian et al., in review).[Results] The aforementioned approaches indicated global mean sea level(GMSL)rise was~9mm/a during 10~7 ka while the rate of the local relative mean sea(RMSL)was~5.6 mm/a, contemporaneously.Such rapid rises resulted shoreline recession worldwide, including Bohai Sea region with possible inundation of a number of beach ridges.However, after~7ka, rise of the ice-equivalent sea level (ESL) decreased to~0.64 mm/a; after 5 ka, the rise even stopped.As to Bohai Bay, the RMSL rise was~0.46 mm/a after 7 ka and was only~0.18 mm/a since 5.5 ka.Both global and regional sea level changes show obvious two-stage-rise characteristics with a turning-point around 7 ka, before and after which the rise changed greatly with an order of magnitude.Overlapping on the remarkable deceleration is an essential offset between the regional isostatic uplift and the local subsidence of neotectonics and sediment self-compaction.Thus, the triple influences, caused by slowing rise of sea level, isostatic uplift and local subsidence, created a nearly~7 ka long morphological pattern, in which a cyclicity evolution between barrier-typed shelly cheniers and lagoon/saltmarsh lowlands existed.During the last 150 years from 1870 CE, GMSL rised quickly with an average rate of~1.7mm/a and even quicker in the last decade (IPCC AR6, 2021; IPCC AR6 SYN, 2023).By the same time, entire protruded sectors of muddy lowland(with upper part of intertidal flat), ~1~3 km in the front of Chenier I, were fully eroded away and, consequently, the 1870 CE-shoreline was retreated to the Chenier I, an old shoreline ended before the 1870's (Wang et al., 2002, 2010).Therefore, we think that there must be a reasonable causality between the global temperature-sea level rise and shoreline recession in our study area.[Conclusions] Following predictions of~6~8 mm/a rise of global sea level in the 21 century (IPCC AR5, 2013; IPCC AR6 SYN, 2023), this will increase the local accommodation space and resulting RSL rise (sea level rise and local subsidence).Consequently, a number of coastal responses will follow such as shoreline retreat, tidal flat erosion and salt wetland deterioration.Finally, the local morphological pattern could plausibly return from the 7ka-lasted barrier-typed Chenier-Lagoon System to the Beach Ridge-Coastal Lowland System estimated during the late Pleistocene to early Holocene. -
-
[1] 陈永胜,胡亦潘,姜兴钰,等.2021.渤海湾沿海低地第II 海相层记录的MIS 5a 阶段海侵[J/OL].中国地质,https://kns.cnki.net/kcms/detail/11.1167.P.20210628.1339.004.html.
[2] 地球科学大辞典编委会.2006.地球科学大辞典[M].北京:地质出版社,962-963.
[3] 范昌福,王宏,李建芬,等.2005.渤海湾西北岸牡蛎礁体对区域性构造活动与水动型海面变化的响应[J].第四纪研究,(25):2,235-244.
[4] 高抒.2021.巨浪来袭:海面上升与文明世界的重建(原著:Goodell J.)[M].上海:上海科学技术出版社,289.
[5] 海洋图集编委会.1990.渤海黄海东海海洋图集[M].北京:海洋出版社,3-5.
[6] 李继军,翟子梅,沈键,等.2009.天津城市地质调查成果报告[R].天津市地质调查研究院,628.
[7] 李建芬,王宏,夏威岚,等.2003.渤海湾西岸210Pb,137Cs 测年与现代沉积速率[J].地质调查与研究,(26):2,114-128.
[8] 李建芬,商志文,王福,等.2015.渤海湾西岸全新世海面变化[J].第四纪研究,(35):2,243-264.
[9] 李培英,徐兴永,赵松龄.2008.海岸带黄土与古冰川遗迹[M].北京:海洋出版社,49-51.
[10] 李世瑜.1962.古代渤海湾西部海岸遗迹及地下文物的初步调查研究[J].考古,6,652-657.
[11] 商志文,陈永胜,姜兴钰,等.2015.渤海湾西岸先民用海的新发现及对“西汉海侵”的启示[J].地质论评,(61):6,1468-1480.
[12] 宋美钰,王福,王宏.2008.21 世纪中叶天津沿海地区极端高水位趋势预测[J].地质通报,(27):6,829-836.
[13] 孙玉芹,张泽,姜兴钰,等.2023.海面上升导致泄洪延时:子牙新河案例分析[J/OL].华北地质,https://link.cnki.net/12.1471.p2023 0921.1655.002.
[14] 天津地质调查中心海岸带与第四纪地质室.2018.21 世纪海面上升与我国研究案例;渤海湾地区(案例1)[J].海岸带地质环境研究动态,6,15-21.
[15] 天津地质调查中心海岸带与第四纪地质室.2021.海面变化与21 世纪上升预测[J].海岸带地质环境研究动态,17,17-26.
[16] 天津地质调查中心海岸带与第四纪地质室.2021.海岸带生态保护修复亟待加强天然牡蛎礁保护的建议[R].中国地质调查局报告.
[17] 天津地质调查中心海岸带与第四纪地质室.2023.渤海湾海岸带贝壳堤生态地质调查研究获得新进展[R].中国地质调查局报告.
[18] 王福,钟新宝,康慧,等.2005.天津市及其沿海地区地表高程变化现状及趋势[J].地质通报,(24):1,87-91.
[19] 王福,王宏,李建芬,等.2006.渤海地区210Pb,137Cs同位素测年的研究现状[J].地质论评,(52):2,244-260.
[20] 王福,王宏,李建芬,等.2023.中国海岸20 ka以来的演替过程及趋势分析:对现代海岸生态保护修复的启示[J].中国地质,(50):1,61-83.
[21] 王宏,李建芬,康慧,等.2002.渤海湾西岸泥质海岸带现代地质作用(沉积,侵蚀与岸线变迁)及精细测年[R].中国地质调查局报告,81.
[22] 王宏,宋美钰,王福,等.2008.渤海湾西岸泥质海岸带地质环境现状与趋势预测[J].地质通报,(27):6,726-738.
[23] 王宏,商志文,王福,等.2010.渤海湾西岸风暴潮:叠加地质因素的新探讨[J].地质通报,(29):5,641-649.
[24] 王宏.2022.渤海湾障壁岛-潟湖型成陆过程及对今后海岸带可持续发展的启示[J].华北地质,(45):1,1-17.
[25] 文明征,姜兴钰,杨朋,等.2020.汪子岛贝壳堤地质调查年报[R].中国地质调查局天津地质调查中心报告,20.
[26] 杨朋,李建芬,王福,等.2023.我国天然牡蛎礁现状及保护修复建议[J].中国地质,(50):4,1082-1092.
[27] 易长荣.2017.天津市控制地面沉降工作最新进展[J].海河水利,3,42-43.
[28] 袁路朋,王永,姚培毅,等.2019.河北雄县全新世中期海侵地层的发现[J].地质通报,(38):6,911-915.
[29] 翟乾祥,吕先进.1987.历史时期渤海湾西岸的演变,天津史地知识(一)(卞僧慧主编)[M].天津:天津市地名委员会办公室,1987,116-133.
[30] 赵希涛.1980.渤海湾西岸全新世海岸线变迁, 华北断块区的形成与发展(中国科学院地质研究所, 国家地震局地质研究所主编)[M].北京:科学出版社,302-309.
[31] 中国地质环境监测院.2016.华北平原关键地区地面沉降报告[R].中国地质调查局报告,240.
[32] 周明.2006.本市地面沉降速率减缓[N].城市快报,2006,11,10.
[33] Cary M, McAfee R, Wolf C L.(eds.).1972.Glossary of Geology[M].Washington D.C., American Geological Institute, 241, 300.
[34] Chen N, Han G Q, Yang J S.2018.Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries[J].Continental Shelf Research, 152, 27-34.
[35] Cheng H, Edwards R L, Sinha S, et al.2016.The Asian monsoon over the past 640, 000 years and ice age terminations[J].Nature, 534, 30, 641-646.
[36] Clark J A, Lingle C S.1979.Predicted relative sea-level changes (18, 000 years B.P.to present)caused by Late-Glacial retreat of the Antarctic Ice Sheet[J].Quaternary Research, 11, 279-298.
[37] CPRA.2017.Louisiana's Comprehensive Master Plan for a Sustainable Coast[R].State of Louisiana, 167.
[38] CPRA.2023.Louisiana's Comprehensive Master Plan for a Sustainable Coast[R].State of Louisiana, 187.
[39] Engelhart, Simon E, Horton, et al.2009.Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States[J].Geology, (37):12, 1115-1118.
[40] Horton B P, Rahmstorf S, Engelhart S E, et al.2014.Expert assessment of sea-level rise by AD 2100 and AD 2300, Quaternary Science Reviews, 84, 1-6.
[41] Horton B P, Kopp R E, Garner A J, et al.2018.Mapping sea-level change in time-space, and probability[J].Annu.Rev.Environ., 43:481-521.
[42] Huang L, Liu C Y, Wang Y B, et al.2014.Neogene-Quaternary postrift tectonic reactiviation of the Bohai Bay Basin, eastern China[J].American Association of Petroleum Geologists (AAPG) Bulletin, 98, 7, 1377-1400.
[43] IPCC AR5.2013.Sea Level Change, In:Climate Change 2013 (Stocker T.F.et al.eds.)[M].Cambridge University Press, 1107-1216.
[44] IPCC AR5 SYN.2014.Climate Changes 2014:Synthesis Report, 31.
[45] IPCC AR6.2021.Ocean, Cryosphere and Sea Level Change, In:Climate Change 2021(Masson-Delmotte V.et al.eds.)[M].Cambridge University Press, 257.
[46] IPCC AR6 SYN.2023.Climate Change 2023[R]:Synthesis Report, 184.
[47] Kemp A C, Wright A J, Edwards R J.et al.2018.Relative sea-level change in Newfoundland, Canada during the past-3000 years[J].Quaternary Science Reviews, 201, 89-110.
[48] Li G X, Li P, Liu Y.et al.2014.Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J].Earth Science Reviews, 139, 390-405.
[49] Li J F, Shang Z W, Wang F, et al.2021.Holocene sea level trend on the coast of Bohai Bay, China[J].Acta Oceanol.Sin., (40):7, 198-248.
[50] Li Y, Wen M Z, Yu H., et al.2023.Changes of coastline and tidal flat and its implication for ecological protection under human activities:Take China’s Bohai Bay as an example[J].China Geology, (6):1-10.
[51] Liu Q Y, He L J, Huang F, et al.2015.Cenozoic lithospheric evolution of the Bohai Bay Basin, eastern North China Craton:constraint from tectonic-thermal modeling[J].Journal of Asian Earth Sciences, 115, 368-382.
[52] Miller K G, Schmelz W J, Browning J V.2020.Ancient sea level as key to the future[J].Oceanography, (33):2, 32-41.
[53] Milne G A.2015.Glacial isostatic adjustment, In:Handbook of Sea-Level Research[M].(Shennan I., Long A.J., Horton B.P., eds.), John Wiley& Sons, 421-437.
[54] Mitrovica J X, Milne G A.2002.On the origin of late Holocene sealevel highstands within equatorial ocean basins[J].Quaternary Science Reviews, 21, 2179-2190.
[55] Mitrovica J X, Hay C, Kopp R, et al.2018.All sea level is local[J], Bulletin of the Atomic Scientists, (74):3, 142-147.
[56] NYCEDC.2019.Financial District and Seaport Climate Resilience Master Plan 2021[M].189.
[57] Reimer P J, Bard E, Bayliss A, et al.2013.IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years cal BP[J], Radiocarbon, (55):4, 1869-1887.
[58] Saintilan N, Horton B, Törnqvist T E, et al.2023.Widespread retreat of coastal habitat is likely at warming levels above 1.5°C[J].Nature, https://doi, org/10.1038/s41586-023-06448-z.
[59] Shang Z W, Wang F, Li J F, et al.2016.New residence times of the Holocene reworked shells on the west coast of Bohai Bay, China[J].Journal of Asian Earth Sciences, 115, 492-506.
[60] Shennan I.2015.Handbook of sea level research:framing research questions, In:Handbook of Sea Level Research (Shennan I., Long A.J., Horton B.P.eds.)[M], UK, John Wiley& Sons, 9-11.
[61] Stuiver M, Braziunas T.1993.Modelling atmospheric 14C influences and 14C ages of marine samples to 10, 000 BC[J].Radiocarbon, 35, 137-189.
[62] Su G L, Xiong C B, Zhang G Y, et al.2023.Coupled processes of groundwater dynamics and land subsidence in the context of active human intervention, a case in Tianjin, China[J].Science of the Total Environment, 903, http://doi.org/ 10.1016/ j.scitotenv., 2023.166803
[63] Tian L Z, Chen Y S, Jiang X Y, et al.2017.Post-glacial sequence and sedimentation in the western Bohai Sea, China, and its linkage to global sea-level changes[J].Marine Geology, 388, 12-24.
[64] Tian L Z, Wang F, Jiang X Y, et al.Holocene history of relative sea level on the south coast of Bohai Sea:far-field GIA process and an associated sea-level highstand for the Mid-Holocene[J].Quaternary Science Reviews, in review.
[65] Van de Plassche O.1986.Introduction, In:Sea-Level Research:a Manual for the Collection and Evaluation of Data (Van de Plassche O.ed.)[M].London, Geo Books, 6-9.
[66] Van der Spek Ad.J.F.2018.The development of the tidal basins in the Dutch Wadden Sea until 2100:the impact of accelerated sea-level rise and subsidence on their sediment budget-a synthesis, Netherlands Journal of Geosciences (Geologie en Mijnbouw)[J], (97):3, 71-78.
[67] Vermeersen B L A, Slangen A B A, Gerkema T, et al.2018.Sea-level change in the Dutch Wadden Sea[J].Netherlands Journal of Geosciences(Geologie en Mijnbouw), (97):3, 79-127.
[68] Vink A, Steffen H, Reinhardt L, et al.2007.Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea)[J].Quaternary Science Reviews, 26, 3249-3275.
[69] Wang F, Li J F, Shi P X, et al.2019.The impact of sea-level rise on the coast of Tianjin-Hebei, China[J].China Geology, (2):1, 26-39.
[70] Wang F, Zong Y Q, Mauz B, et al.2020.Holocene sea-level change on the central coast Bohai Bay, China[J].Earth Surf.Dynam., 8, 679-693.
[71] Wang H.1992.Isostasy and Holocene high sea levels in East and Southeast Asia[J].Journal of Southeast Asian Earth Sciences, (7):1, 17-21
[72] Wang H.1994.Palaeoenvironment of Holocene Chenier and Oyster Reefs in the Bohai Bay (China)[M], Doctoral Thesis, Vrije Universiteit Brussel, 244.
[73] Wang H, Shang Z W, Li J F, et al.2010.Holocene shoreline changes and marine impacts on the muddy coast, western Bohai Bay, China[J].Geological Bulletin of China, (29):5, 627-640.
[74] Wang W Y, Fan C F, Song Z J, et al.Pacific oyster(Crassostrea gigas)shell growth duration and carbon sequestration in Bohai Bay, China[J], China Geology, accepted.
[75] Wen M, Zhang H B, Wang S J, et al.2022.Field Investigation on the Coastal Erosion and Progradation Evolution of the Binzhou Shelly Chenier in China:Comparisons between Normal and Typhoon Hydrodynamics[J].Journal of Marine Science and Engineering, (10):6, 752.
[76] Wu P C, Wei M, Hondt S.2022.Subsidence in coastal cities throughout the world observed by InSAR[J].Geophysical Research Letters, 49:7, https://doi.org/10.1029/2022GL098477.
-
计量
- 文章访问数: 81
- PDF下载数: 10
- 施引文献: 0