High temperature and high pressure experimental study on the reaction of silicon-rich melt with mantle olivine and its implications for the property transformation of the subcontinental lithosphere mantle in the North China Craton
-
摘要: 【研究目的】大陆岩石圈地幔内部广泛发育熔体与橄榄岩的反应,以华北克拉通岩石圈较为典型。根据地幔捕虏体的矿物交代特征和相关元素地球化学指标判别,硅酸盐熔体与橄榄岩的反应是华北克拉通岩石圈地幔内熔体—岩石反应的主要类型。然而华北克拉通陆下岩石圈地幔性质转变的实验岩石学证据尚不充足。【研究方法】为了探讨这一反应机制及相关动力学过程,以河南鹤壁方辉橄榄岩中的橄榄石和湖北黄陵三斗坪的英云闪长岩为初始物,在中国科学院地球内部物质高温高压重点实验室的LC250—300/50活塞圆筒压机上开展了高温(1 200~1 400°C)高压(1.0和1.5 GPa)条件下的富硅熔体与地幔橄榄石的反应实验。【研究结果】结果表明,代表古老难熔岩石圈地幔的橄榄石与富硅熔体反应,生成斜方辉石。斜方辉石的En 组分73~93,属于顽火辉石。在1.0 GPa 压力下,温度从1250°C升高至1350°C,有更多的镁橄榄石分子溶解到熔体中,随着斜方辉石的结晶,残余熔体SiO2、Al2O3和K2O分别从66.20%、17.24%、1.40%下降至61.91%、16.02%、1.28%,而MgO 由3.93%升高至8.26%。在1.5 GPa 压力下,温度从1 250 °C 升高至1 400 °C,残余熔体SiO2、Al2O3、K2O 分别从65.79%、17.64%、1.36%下降至61.74%、15.78%、1.23%;而MgO 从3.11%升高至7.07%。【结论】温度变化对反应后熔体化学组成的影响显著超过压力变化。富硅熔体与橄榄石反应生成斜方辉石,能够解释华北克拉通地幔橄榄岩包体的交代现象,斜方辉石脉体是富硅熔体与橄榄石反应的产物,该反应同时导致岩石圈地幔由难熔型向饱满型转变。Abstract: This paper is the result of research on the lithospheric mantle.[Objective]In terms of petrological and geochemical studies on a large number of mantle xenoliths, melt-peridotite reactions always occur in subcontinental lithospheric mantles, especially in the North China Craton (NCC). Based on the mineral metasomatic characteristics of mantle xenoliths and the related element geochemical signatures, the reaction between silicate melt and peridotite is the main type of melt-rock reaction within the NCC lithosphere mantle.However, the direct evidence of experimental petrography about the mechanism is insufficient. [Methods] In this contribution, natural olivine of harzburgite from Hebi, Henan province, and tonalite from Sandouping, Huangling, Hubei province were collected as starting material. The Si-rich melt-olivine reaction experiments were performed at conditions of 1 200~1 400°C, 1.0~1.5 GPa, on LC25-0300/50 piston-cylinder apparatus equipped at Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, which explored the reaction mechanism and kinetics of the melt-peridotite reaction. [Results] The main crystallized phase under experimental conditions is orthopyroxene, its En content ranges from 73 to 100 discriminated into enstatite.After reactions, the MgO content of reacted melts increased and linearly correlated with the temperature, while the contents of SiO2, Al2O3 and K2O decreased linearly with the increase in temperature.As the temperature increased, more forsterite was dissolved in the melts, and with more orthopyroxene generated, the SiO2, Al2O3 and K2O of melts decreased which changed the composition of the melts. Under the pressure of 1.0GPa, the temperature rises from 1 250°C to 1 350°C, the SiO2, Al2O3, and K2O in the residual melt decrease from 66.20%, 17.24% and 1.40% to 61.91%, 16.02%, and 1.28% respectively, however MgO in the residual melt increases from 3.93%to 8.26%.Under the pressure of 1.5 GPa, the temperature rises from 1 250°C to 1 400°C, the SiO2, Al2O3 and K2O in the residual melt decrease from 65.79%, 17.64% and 1.36% to 61.74%, 15.78%, and 1.23% respectively, however MgO in the residual melt increases from 3.11% to 7.07%. [Conclusions]The pressure has a much less influence on the chemical composition change or residual melts than the temperature. In all reactions between Si-rich melt and olivine, orthopyroxene was newly formed the experimental results also explain the composition of the peridotite in NCC and the phenomenon of the orthopyroxene veins in the peridotite, which can transform the lithosphere mantle from refractory into fertile.
-
-
[1] 常青松,施建荣,张家辉,等.2022.集宁地区古元古代基性麻粒岩两期变质事件的地质意义[J].华北地质,45(02):68-75.
[2] 高山,章军锋,许文良,等.2009.拆沉作用与华北克拉通破坏[J].科学通报,54:1962-1973.
[3] 郭硕,刘洋,滕学建,等.2023.华北克拉通西北缘(狼山段)边界特征及其构造意义[J].华北地质,46(03):28-34.
[4] 王超,金振民,高山,等. 2010.华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制:实验约束[J].中国科学:地球科学,40(5):541-555.
[5] 王春光.2015.不同性质熔体与橄榄岩反应的动力学研究[D].博士学位论文.长春:吉林大学.
[6] 王惠初,张家辉,任云伟,等.2022.华北克拉通中北部麻粒岩带基础地质调查进展及相关问题讨论[J].华北地质,45(01):18-41.
[7] 王明梁,唐红峰.2014.英云闪长质熔体与地幔橄榄石反应的实验研究--对克拉通内部高镁安山岩成因的约束[J].中国科学:地球科学,44(3):405-413.
[8] 王勤.2016.橄榄石的同系温度T/Tm:对上地幔蠕变与橄榄石组构转变的启示[J].中国科学:地球科学,46(5):618-638.
[9] 吴福元,徐义刚,高山,等.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,24(6):1145-1174.
[10] 徐义刚.2006.用玄武岩组成反演中-新生代华北岩石圈的演化[J].地学前缘,13(2):93-104.
[11] 许文良,周群君,杨德彬,等.2013.大陆深俯冲作用对邻区岩石圈地幔改造的时间、方式与过程:鲁西橄榄岩类与辉石岩类捕虏体证据[J].科学通报,58(23):2300-2305.
[12] 张宏福.2009.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J].科学通报,54(14):2008-2026.
[13] 郑建平,余淳梅,路凤香,等.2007.华北东部大陆地幔橄榄岩组成、年龄与岩石圈减薄[J].地学前缘,14(2):87-97.
[14] 郑永飞,徐峥,赵子福,等.2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J].中国科学:地球科学,48(4):379-414.
[15] 周君群.2014.鲁西早白垩世火成岩中异剥橄榄岩和辉石捕虏体的成因[D].博士学位论文.长春:吉林大学.
[16] Bodinier J L, Vasseur G, Vernieres J, et al. 1990.Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite[J].Journal of Petrology, 31(3):597-628.
[17] Boyd F R. 1989. Compositional distinction between oceanic and cratonic lithosphere[J].Earth and Planetary Science Letters, 1989, 96(1-2):15-26.
[18] Carlson R W, Pearson D G, James D E, et al. 2005.Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 43(1).
[19] Dai H K, Zheng J P, O’Reilly S Y, et al.2019.Langshan basalts record recycled Paleo-Asian oceanic materials beneath the Northwest North China Craton[J].Chemical Geology, 524:88-103.
[20] Fan W M, Zhang H F, Baker J, et al.2000.On and Off the North China Craton:Where is the Archaean Keel?[J]. Journal of Petrology, 41:933-950.
[21] Gao S, Rudnick R L, Xu W L, et al.2008.Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J].Earth and Planetary Science Letters, 270:41-53.
[22] Griffin W L, Zhang A D, O’Reilly S Y, et al.1998.Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton.In:Flower M, Chung S L, Lo C-H, et al(eds).Mantle dynamics and plate interaction in east Asia[J]. American Geophysical Union, Geodynamics Series 27, 27:107-126.
[23] Griffin W, O’Reilly S Y, Afonso J C, et al. 2009.The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications[J].Journal of Petrology, 50:1185-1204.
[24] Hu J, Jiang N, Carlson R W, et al. 2019. Metasomatism of the crustmantle boundary by melts derived from subducted sedimentary carbonates and silicates[J]. Geochimica et Cosmochimica Acta, 260:311-328.
[25] Kelemen P B, Dick H J B, Quick J E. 1992. Rormation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 358:635-641.
[26] Kelemen P B, Hart S R, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction[J].Earth and Planetary Science Letters, 164:387-406.
[27] Lin A B, Zheng J P, Xiong Q, et al. 2019. A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton[J]. Contributions to Mineralogy and Petrology, 174(2):15.
[28] Liu Y S, Gao S, Lee C T, et al.2005.Melt-peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust[J].Earth and Planetary Science Letters, 234(1-2):39-57.
[29] Morgan Z, Liang Y. 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation[J]. Contributions to Mineralogy and Petrology, 150:369-385.
[30] Sun J, Liu C Z, Wu F Y, et al.2012.Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton:Trace-element and Sr-isotope constraints[J]. Chemical Geology, 328:123-136.
[31] Wang M, Tang H. 2013.Reaction experiments between tonalitic melt and mantle olivine and their implications for genesis of high-Mg andesites within cratons[J]. Science China: Earth Sciences, 56(11):1918-1925.
[32] Xu W L, Hergt J M, Gao S, et al.2008.Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 265:123-137.
[33] Xu W L, Yang D B, Gao S, et al. 2010.Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning[J].Chemical Geology, 270:257-273.
[34] Yaxley G M, Green D H.1998.Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust[J]. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78:243-255.
[35] Zhang H T, Zhang H F, Zou D Y. 2021.Comprehensive refertilization of the Archean-Paleoproterozoic lithospheric mantle beneath the northwestern North China Craton: Evidence from in situ Sr isotopes of the Siziwangqi peridotites[J].Lithos, 380-381:105822.
[36] Zhao X M, Wang H, Li Z H, et al. 2020.Multi-stage metasomatism of lithospheric mantle by asthenosphere derived melts: Evidence from mantle xenoliths in Daxizhuang at the eastern North China Craton[J].Mineralogy and Petrology, 114(2):141-159.
[37] Zhao X M, Wang H, Li Z H, et al.2021.Nature and evolution of lithospheric mantle beneath the western North China Craton: Constraints from peridotite and pyroxenite xenoliths in the Sanyitang basalts[J].Lithos, 384-385:105987.
[38] Zheng J P, O’Reilly S Y, Griffin W L, et al. 2001.Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J].Lithos, 57:43-66.
[39] Zheng J P, Griffin W L, O’Reilly S Y, et al.2007.Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et Cosmoschimica Acta, 71:5203-5225.
[40] Zou D Y, Zhang H F, Zhang X Q, et al. 2020.Refertilization of lithospheric mantle beneath the North China Craton in Mesozoic: Evidence from in situ Sr isotopes of Fuxin peridotite[J]. Lithos, 364-365:105478.
-
计量
- 文章访问数: 59
- PDF下载数: 29
- 施引文献: 0