中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Manderso Temesgen Mekuriaw, Mekonnen Yitbarek Andualem, Worku Tadege Aragaw. 2023. Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 11(3): 221-236. doi: 10.26599/JGSE.2023.9280019
Citation: Manderso Temesgen Mekuriaw, Mekonnen Yitbarek Andualem, Worku Tadege Aragaw. 2023. Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 11(3): 221-236. doi: 10.26599/JGSE.2023.9280019

Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Table 1.  Different values of N, Saaty's ratio index (Abdalla et al. 2020; Allafta and Opp, 2021; Jabbar et al. 2019; Savita et al. 2018; Teja and Singh, 2019)

    N123456789101112
    RI 0.000.000.580.901.121.241.321.411.451.491.511.48
    下载: 导出CSV

    Table 2.  Rate and ranks of drainage density

    Drainage density / km/km2RankArea / km2Percent / %
    0–0.698Very low23.10326.659
    0.698–1.56Low22.50025.963
    1.56–2.39Moderate19.59122.606
    2.39–3.36High151.45317.476
    3.36–6.858Very high63.2407.297
    下载: 导出CSV

    Table 3.  Rank and rate of slope layer

    Slope in degreesConditionRankArea / km2Percent / %
    0–4.272FlatVery Good166.6519.23
    4.272–8.312 2GentleGood266.6930.77
    8.312–15.672MediumModerate284.4032.82
    15.672–30.571SteepPoor133.6715.42
    30.571–69.865Highly steepVery poor15.231.76
    下载: 导出CSV

    Table 4.  Geomorphologic description and rate of the layer (FAO)

    GeomorphologyLandformsArea / km2Percent / %
    High to mountainous relief hills Volcanic land form 203.229 6 3.66
    Moderately dissected plateaux, plateaux with hills abd rolling to hilly plateau 324.154 0.99

    Plains and low plateaux with hills, moderately dissected sideslopes and dissected plains

    8.1512 95.35
    Moderately dissected plateaux, plateaux with hills and rolling to hilly plateau Residual land form 298.872 8
    Moderate to high relief hills and severely dissected side slopes and plateaux 0.464 8
    Seasonal wetland and seasonally waterlogged land Alluvial land form 31.703 2
    下载: 导出CSV

    Table 5.  Rank and rate of geology layer

    GeologyRankArea / km2Percent / %
    PreCambrianLow1.0480.12
    Cretaceous-JurassicModerate126.8614.64
    Tertiary extrusive and intrusiveHigh738.67185.24
    下载: 导出CSV

    Table 6.  Rate and rank of lineament density theme

    Lineament density / km/km2RankArea / km2Percent / %
    0–0.322Very low439.34150.695
    0.32185–0.88Low146.74516.933
    0.88–1.32Moderate235.72627.200
    1.32–1.77High29.2203.372
    1.77–2.74Very high15.6031.800
    下载: 导出CSV

    Table 7.  Rate and ranks of RF layer

    Rainfall / mmRankArea / km2Percent / %
    1190–1280Very Poor75.5758.721
    1280–1370Poor151.31217.460
    1380–1460Moderate403.33346.540
    1460–1550Good178.13520.555
    1550–1640Very good58.2756.724
    下载: 导出CSV

    Table 8.  Area coverage and rate of LU/LC

    Land use typeRankArea / km2Percent / %
    Water bodyVery high0.7970.092
    ForestHigh43.7855.052
    GrasslandModerate29.5713.412
    Agricultural landModerate642.77774.170
    ShurblandModerate26.6743.078
    Builtup AreaVery poor122.83814.174
    BarelandVery Poor0.1810.021
    下载: 导出CSV

    Table 9.  Soil type rank and rate

    Soil typeSoil groupArea / km2Percent / %Ranks
    Chromic CambisolsCambisols29.96483.46
    Chromic LuvisolsLuvisols112.803213.02Moderate
    Chromic VertisolsVertisols92.035610.62Poor
    Dystric NitosolsNitosols3.64360.42Very high
    Eutric FluvisolsFluvisols0.53360.06Very high
    Eutric NitosolsNitosols138.419615.97Very high
    LithosolsLithosols19.0822.20High
    Orthic AcrisolsAcrisols4.41280.51Poor
    Pellic VertisolsVertisols465.680453.74Poor
    下载: 导出CSV

    Table 10.  The relative weight of each thematic layers

    MatrixRGeSlGeomDdLULCLdSWeight / %
    R1333555733.09
    Ge0.33131355520.39
    Sl0.330.3313133513.97
    Geom0.3310.331125311.35
    Dd0.20.331111238.24
    LULC0.20.20.330.511135.69
    Ld0.20.20.330.20.51114.06
    S0.1430.20.20.330.330.33113.20
    下载: 导出CSV

    Table 11.  Rank and area coverage of groundwater potential zones

    ClassesRankArea / km2GWP weighted area / %
    1Very poor potential35.5164.112
    2Poor potential141.19716.347
    3Moderate potential380.08744.005
    4High potential286.63733.186
    5Very high potential20.3032.351
    Total866.63100
    下载: 导出CSV
  • Abdalla F, Moubark K, Abdelkareem M. 2020. Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt. Journal of Taibah University for Science. DOI:10.1080/16583655.2020.1822646.

    Abudeif AM, Abdel Moneim AA, Farrag AF. 2015. Multicriteria decision analysis based on analytic hierarchy process in GIS environment for siting nuclear power plant in Egypt. Annals of Nuclear Energy, 75: 682−692. DOI:10.1016/j.anucene.2014.09.024.

    Adeyeye OA, Ikpokonte EA, Arabi SA. 2019. GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. Egyptian Journal of Remote Sensing and Space Science, 22(2): 175−181. DOI:10.1016/j.ejrs.2018.04.003.

    Ajay Kumar V, Mondal NC, Ahmed S. 2020. Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. Journal of the Indian Society of Remote Sensing, 48(3): 497−511. DOI:10.1007/s12524-019-01086-3.

    Allafta H, Opp C Patra S. 2021. Identification of groundwater potential zones using remote sensing and GIS techniques : A case study of the Shatt Al-Arab Basin. Remote Sensing, 13(1): 112. DOI:10.3390/rs13010112.

    Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9(1): 1−17. DOI:10.1038/s41598-019-38567-x.

    Arya S, Subramani T, Karunanidhi D. 2020. Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environmental Earth Sciences, 79(5): 102. DOI:10.1007/s12665-020-8832-9.

    Atmaja RRS, Putra DPE, Setijadji LD. 2019. Delineation of groundwater potential zones using remote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia. Sixth Geoinformation Science Symposium, 192-202. DOI:10.1117/12.2548473.

    Berhanu KG, Hatiye SD. 2020. Identification of groundwater potential zones using proxy sata: Case study of Megech Watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28(February): 100676. DOI:10.1016/j.ejrh.2020.100676.

    Biswas S, Mukhopadhyay BP, Bera A. 2020. Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79(12): 302. DOI:10.1007/s12665-020-09053-9.

    Das B, Pal SC, Malik S, et al. 2019. Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 3(3): 223−237. DOI:10.1080/24749508.2018.1555740.

    Das S, Pardeshi SD. 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: A study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7): 1−16. DOI:10.1007/s13201-018-0848-x.

    Deepa S, Venkateswaran S, Ayyandurai R, et al. 2016. Groundwater recharge potential zones mapping in upper Manimuktha Sub Basin Vellar River Tamil Nadu India using GIS and remote sensing techniques. Modeling Earth Systems and Environment, 2(3): 1−13. DOI:10.1007/s40808-016-0192-9.

    Duan HJ, Deng ZD, Deng FF, et al. 2016. Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Mathematical Problems in Engineering, 2016: 1−12. DOI:10.1155/2016/2064575.

    Ettazarini S, El Jakani M. 2020. Mapping of groundwater potentiality in fractured aquifers using remote sensing and GIS techniques: The case of Tafraoute region, Morocco. Environmental Earth Sciences, 79(5): 105. DOI:10.1007/s12665-020-8848-1.

    Fildes SG, Clark IF, Somaratne NM, et al. 2020. Mapping groundwater potential zones using remote sensing and geographical information systems in a fractured rock setting, Southern Flinders Ranges, South Australia. Journal of Earth System Science, 129(1): 160. DOI:10.1007/s12040-020-01420-1.

    Gelagay HS, Minale AS. 2016. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2): 126−136. DOI:10.1016/j.iswcr.2016.01.002.

    Hammouri N, El-naqa A, Barakat M. 2012. An integrated approach to groundwater exploration using remote sensing and geographic information system. Journal of Water Resource and Proteciton, 4(9): 717−724. DOI:10.4236/jwarp.2012.49081.

    Haque SM, Kannaujiya S, Taloor AK, et al. 2020. Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater for Sustainable Development, 10: 100337. DOI:10.1016/j.gsd.2020.100337.

    Ikegwuonu ES, Balogun DO, Agunloye O, et al. 2021. Geospatial assessment of groundwater potential in Jos south local government area of Plateau State, Nigeria. International Jouranl of Engineering Research and Technology, 10(3): 27−38.

    Jabbar FK, Grote K, Tucker RE. 2019. A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process ( AHP ) methodology : A case study in Eagle Creek Watershed, USA. Environmental Science and Pollution Research, 26: 31981−31997. DOI:10.1007/s11356-019-06355-9.

    Janarthanan G, Thirukumaran V. 2020. Mapping of groundwater potential zones in Pulampatti Watershed, Dharmapuri District – a geospatial approach. Indian Journal of Natural Sciences, 12(66): 1−9.

    Kassahun N, Mohamed M. 2018. Groundwater potential assessment and characterization of Genale-Dawa River Basin. Open Journal of Modern Hydrology, 08(04): 126−144. DOI:10.4236/ojmh.2018.84010.

    Kavidha R, Elangovan K. 2012. Assessment of groundwater potential zones in erode district, tamil nadu, by using gis techniques. Pollution Research, 31(2): 161−167.

    Kindie AT, Enku T, Moges MA. 2019. Spatial analysis of groundwater potential using GIS based multi criteria dcision analysis method in Lake Tana Basin, Ethiopia (Vol. 2). International Conference on Advances of Science and Technology. Cham: Springer, 2019: 439−456. DOI:10.1007/978-3-030-15357-1_37.

    Pande CB, Moharir KN, Panneerselvam B, et al. 2021. Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Applied Water Science, 11(12): 1−20. DOI:10.1007/s13201-021-01522-1.

    Province B, Kaewdum N, Chotpantarat S. 2021. Mapping potential zones for groundwater recharge using a GIS technique in the Lower Khwae Hanuman Sub-Basin area. Prachin, 9: 1−16. DOI:10.3389/feart.2021.717313.

    Rajasekhar M, Sudarsana Raju G, Sreenivasulu Y, et al. 2019. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch, 2: 97−108. DOI:10.1016/j.hydres.2019.11.006.

    Saha A, Patil M, Karwariya S, et al. 2018. Identification of potential sites for water harvesting structures using geospatial techniques and multi-criteria decision analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XLII-5: 329−334. DOI:10.5194/ISPRS-ARCHIVES-XLII-5-329-2018.

    Saranya T, Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2): 1105−1122. DOI:10.1007/s40808-020-00744-7.

    Savita RS, Mittal HK, Satishkumar U, et al. 2018. Delineation of groundwater potential zones using remote sensing and GIS techniques in Kanakanala Reservoir Subwatershed, Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 7(1): 273−288. DOI:10.20546/ijcmas.2018.701.030.

    Shadeed SM, Judeh TG, Almasri MN. 2019. Developing GIS-based water poverty and rainwater harvesting suitability maps for domestic use in the Dead Sea region(West Bank, Palestine). Hydrogeology and Earth System Science, 23(3): 1581−1592. DOI:10.5194/hess-23-1581-2019.

    Shao ZF, Huq ME, Cai BW, et al. 2020. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environmental Modelling and Software, 134: 104868. DOI:10.1016/j.envsoft.2020.104868.

    Sivakumar V, Vinay LY, Reddy K. 2019. Identification of groundwater potential zones using gis and remote sensing. International Journal of Pure and Applied Mathematics, 119(17): 3195-3210.

    Suryabhagavan K. 2017. Application of remote sensing and GIS for groundwater potential zones identification in Bata river basin, Himachal Pradesh, India. Journal of Geomatics, 11(1): 66−76.

    Takorabt HZS. et al. 2018. Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM + data, case of the Chott El Gharbi Basin (western Algeria). Arabian Journal of Geosciences, 11(4): 76. DOI:10.1007/s12517-018-3412-y.

    Teja KS, Singh D. 2019. Identification of groundwater potential zones using remote sensing and GIS, case study: Mangalagiri mandal. International Journal of Recent Technology and Engineering, 7(6): 860−864.

    Thapa R, Gupta S, Guin S, et al. 2018. Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: A comparative approach between vulnerability models. Water Science, 32(1): 44−66. DOI:10.1016/j.wsj.2018.02.003.

    Yeh HF, Cheng YS, Lin HI, et al. 2016. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1): 33−43. DOI:10.1016/j.serj.2015.09.005.

  • 加载中

(11)

(11)

计量
  • 文章访问数:  880
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2022-09-11
录用日期:  2023-06-05
网络出版日期:  2023-09-15
刊出日期:  2023-09-15

目录