中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Nayak Bhaktishree, Nayak Pallavi. 2025. Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods. Journal of Groundwater Science and Engineering, 13(2): 193-208. doi: 10.26599/JGSE.2025.9280049
Citation: Nayak Bhaktishree, Nayak Pallavi. 2025. Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods. Journal of Groundwater Science and Engineering, 13(2): 193-208. doi: 10.26599/JGSE.2025.9280049

Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Table 1.  Comparison of fault segmentation techniques from seismic data

    Reference Techniques used Significance Limitations
    Wu et al. (2019)

    Fully Convolutional Neural Network

    Efficient fault segmentation, Automatic feature extraction

    Requires expert knowledge for accurate labelling, Time-consuming label creation

    Hu et al. (2020) CNN

    Limited training set usage, Reduced training duration, Improved segmentation

    Balancing model complexity with resources is challenging

    Dou et al. (2021) 3D-CNN

    Effective training with limited data, Attention mechanism for noise reduction

    Hyperparameter tuning is required, Limited data for attention module

    Lefevre et al. (2020) Analog models

    Understanding fault geometry determinants

    Difficulty in achieving true scale similarity

    Dou et al. (2022)

    Fault-Net architecture

    Reduction of false negatives, Preserving edge information

    Incomplete labelling may lead to inaccurate training

    Visini et al. (2020)

    FRESH and SUNFISH

    Improving PSHA methodologies

    Lack of user-friendly interface, Uncertainty handling needs improvement

    Li et al. (2023) Fault-Seg-Net

    High precision fault localization, Compound loss for uneven segmentation

    Increased computational overhead, Training time prolongation

    Lima et al. (2024) DNFS Enhanced accurate predictions Sensitivity to geological transitions
    Liu et al. (2020) CNN

    Improved interpretability, Better prediction accuracy

    Need for deeper interpretability exploration, Additional domain knowledge integration

    Li et al. (2024) Fault-Seg-LNet

    Achieve the tradeoff between model precision and efficiency

    Continuous fine-tuning required, Adaptation to changing geological conditions

    Khayer et al. (2023) HOG

    Enhances the accuracy of geological object delineation in seismic images

    The quality of seismic data and the optimization of HOG parameters affects the system performance

    Dou et al. (2024) FaultSSL

    Enhances fault detection by effectively integrating limited labelled data

    Constrained by the reliance on sparse and potentially inaccurate 2D slice annotations

    下载: 导出CSV

    Table 2.  Review of fault detection from seismic data using ML algorithms

    Reference Techniques used Significance Limitations
    Zeng et al. (2021) SVM, VMD

    Intelligent fault diagnosis, noise attenuation, strong relationship between seismic features and faults

    Ineffective for non-stationary or complex noise patterns

    Martín et al. (2023) KNN

    Interactive 3D fault identification, lithological classification

    Struggles with complex fault geometries and heterogeneities

    Ashraf et al. (2020) NN, ACO

    Advanced fracture network recognition, fault identification using seismic data

    Requires careful parameter tuning for optimization, may not effectively handle all types of faults

    Noori et al. (2019)

    Gaussian process regression

    Fault detection via abnormality identification, fault edge determination

    Propagation of uncertainties from GPR into fault detection may lead to false positives or missed detections

    Ren et al. (2023) SVM, PSO

    Provided insights into fault exposure conditions for roads and wells in the target coal seam

    Lack of true fault existence probability assessment.

    Wu et al. (2021) FCN

    Fault segmentation based on FCN, balanced loss function for model optimization

    Incorporating physical and geological constraints in model architecture is challenging

    Wu et al. (2019) MTL-CNN

    Fault detection, structure-oriented smoothing, seismic normal vector estimation

    Designing CNN architectures for improved structural interpretation is challenging

    Jang et al. (2023) PCA, RF

    Relationship between fault distribution and controlling factors, efficient RF classification

    Challenge in interpreting feature importance due to RF's bias toward correlated features

    Gong et al. (2024) SOM-GWO-SVM

    Intelligent data preprocessing, fault identification accuracy improvement

    Struggles to capture temporal dynamics of fault patterns and seismic activity evolution

    Wang et al. (2020) CNN

    Enhanced fault detection through knowledge amalgamation, student CNN trained on synthetic and field data

    Investigation of appropriate training data sets and labels needed for effective fault interpretation

    Feng et al. (2022) LOC-FLOW

    Enhances earthquake catalog accuracy and provides high-resolution velocity structures

    Effectiveness is constrained by the availability and quality of seismic data from dense station networks

    Waheed et al. (2021) PINNTOMO

    Enhances seismic tomography by leveraging physics-informed neural networks

    Has extremely complex geological settings

    下载: 导出CSV

    Table 3.  Review of fault detection from seismic data using DL algorithms

    Reference Techniques used Significance Limitations
    An et al.(2021) DCNN

    Efficient fault recognition methodology outperforms state-of-the-art methods, anticipates small errors

    Mitigating label discrepancies, reliable model training

    Palo et al.(2023)

    Graph Convolutional Network (GCN)

    Interpreting faults in seismic data, good accuracy

    Lacks feature engineering strategies

    Alfarhan et al. (2020)

    Encoder-decoder deep neural network

    Good detection accuracy, robustness to labelled data scarcity

    Lack of uncertainty estimation methods

    Bi et al.(2021)

    Volume-to-volume neural network

    High prediction accuracy, low computing costs

    Ineffective for low dip-angle thrust faults

    Li et al.(2019) U-Net

    Efficient fault detection with small training sets, increased interpretation efficiency

    Class imbalance leads to less accurate fault detection

    Xu et al. (2021)

    3D convolutional autoencoder

    Handling seismic data directly, with good accuracy

    Needs optimization of architecture and hyperparameters

    Li et al. (2021) Deep CNN

    Enhanced perceived quality, better fault detection

    Artifacts, slight overfitting
    Wu et al. (2022)

    Modified U-Net with dilated convolutions

    Improved capacity for multi-scale information, better fault identification

    Requires further computational optimization

    Lin et al. (2022)

    2.5D CAU-net with channel attention mechanism

    Efficient utilization of correlation between seismic slices, enhanced fault detection

    Model overfitting with a larger cropping approach

    Ma et al. (2023) U-Net and CNN

    Accurate multiparameter elastic wave inversion, strong generalizability

    Physical limitations, noisy data sensitivity

    Vu and Jardani (2022a)

    SegNet

    Accurately map fracture networks in heterogeneous aquifers using hydraulic tomography data

    Not fully capture the complexities of real-world fracture geometries and hydrological conditions

    Vu and Jardani(2022b)

    HT-XNET

    Simultaneously reconstruct transmissivity and storability with improved accuracy

    Need in-depth considering limits under variance of the method on aquifer conditions and data

    下载: 导出CSV

    Table 4.  Review of fault detection from seismic data using adaptive learning algorithms

    Reference Techniques
    used
    Significance Limitations

    Zini et al. (2019)

    SeisNet

    Achieved high F1 score on bright spot recognition, quantifying bright spots, and predicting volume

    Further research is needed for processing seismic data, waveform prediction, and performance on larger datasets

    Zhou et al. (2021)

    Transfer learning with convolutional neural networks

    Quick training, produced satisfactory results despite the class imbalance

    Inaccuracy in detecting fault discontinuities in 3D space

    Cunha et al. (2020)

    U-net based on DANN (Domain Adversarial Neural Network)

    Improved fault detection accuracy, addressed challenges of real geological situations, noise disturbance, and seismic signal frequency

    challenge in finishing fault detection on seismic data with various frequencies

    Ao et al. (2021)

    Transfer learning

    Improved seismic dip estimation accuracy, applicability in real-world scenarios

    Difficulty in assessing the reliability of network predictions

    Dou et al. (2024)

    Tiny Self-Attention and HRNet, contrastive learning

    Enhanced representation learning, improved fault detection tasks, addressed memory overflow issues

    Challenges in sparse distance matching in 3D high-resolution data

    Zhou et al. (2021)

    Progressive transfer learning

    Enhanced fault detection using real seismic data, improved fault continuity

    Difficulty in updating training dataset without introducing biases

    Wei et al. (2022)

    CNN and transfer learning

    Robust fault feature representation learning, effective fault detection

    Challenges in tuning focal loss parameters and ensuring effectiveness across different datasets

    Li et al. (2024)

    Fault-Attri-Attention

    Improved fault detection with enhanced accuracy

    Reduced efficiency and increased computational overhead due to managing multiple attributes

    Mustafa et al. (2024)

    3D CNN and Attention-guided training Framework

    Enhanced fault prediction with better performance

    Lack of deep understanding in modelling and incorporating human visual attention

    Zeng et al. (2024)

    3D-UNet

    Enhanced feature extraction and fault detection, improved accuracy and continuity

    Struggles in characterizing low-order faults and fault continuity

    Zhang et al. (2022)

    Deep Transfer Learning

    Significantly accelerates hydraulic fracture imaging through deep transfer learning

    Reliance on simplified models that introduce approximation errors

    Titos et al. (2023)

    Transfer Learning

    Enhances real-time volcano tectonic earthquake monitoring through transfer learning

    The quality and completeness of the master dataset introduce biases

    下载: 导出CSV

    Table 5.  Review of enhanced fault detection models from seismic data

    Reference Techniques
    used
    Significance Limitations

    Yan et al. (2019)

    Forward and backward diffusion

    Enhancing fault features while suppressing noise, improving fault-tracking accuracy

    Struggles in differentiating actual faults and stratigraphic features in complex geological structures

    Mousavi et al. (2022)

    Erosion algorithm, Sobel and Laplacian of Gaussian

    Potential alternative to conventional fault enhancement methods

    Artificial enhancements or suppressions near boundaries affect overall image quality

    Lyu et al. (2019)

    Structure-oriented filtering

    Improved fault identification through coherence enhancement

    Introduction of spurious features or oversimplification of complex fault networks

    Yan et al. (2021)

    Transfer learning

    Enhanced fault detection accuracy, particularly for complex fault types

    Difficulty in accurately identifying complex fault types such as thrust and listric faults

    Laudon et al. (2021)

    CNN-SOM

    Better outcomes compared to using single ML techniques

    Lack of feature design invariant to variations such as noise, resolution, or acquisition parameters

    Yuan et al. (2019)

    Adaptive spectrum decomposition and super-resolution DL with CNN

    Improved fault-detection system with adjustable scale highlighting and high-resolution

    Bridging the gap between domains and fostering collaboration

    Otchere et al. (2022)

    Deep Residual U-net

    Respectable fault prediction result, enhanced seismic imaging

    Struggles to understand uncertainty inherent in predictions

    Zhang et al. (2024)

    FaultSeg Swin-UNet Transformer

    Improved feature representations, increased recognition accuracy

    Adaptability challenges with narrow, elongated, and unevenly distributed fault annotations

    Mahadik et al. (2021)

    Gradient structure tensor-based coherence

    Clearer fault lines with less noise, future goal of creating automated defect detection system

    Future integration of DL and ML is needed for complete automation

    Isaac et al. (2023)

    Dip-steered diffusion filter, DSMF and FEF

    Revealing small-scale faults and stratigraphic heterogeneity

    Need for improvement in noise suppression while preserving useful signal information

    Sheng et al. (2022)

    REST and hypoDD

    Mechanisms of induced seismicity through fluid diffusion and fault reactivation

    Limited by the lack of long-term observational data and potential variability

    Feng et al. (2022)

    Enhanced Geothermal System (EGS)

    Offers a quantitative framework for assessing fault slip potential during geothermal operations

    Limited by uncertainties in stress field parameters

    下载: 导出CSV
  • Alfarhan M, Deriche M, Maalej A, et al. 2020. Multiple events detection in seismic structures using a novel U-Net variant. In 2020 IEEE International Conference on Image Processing (ICIP), 2900-2904, IEEE. DOI:10.1109/ICIP40778.2020.9190682.

    Alfarhan M, Maalej A, Deriche M. 2020. Concurrent detection of salt domes and faults using resnet with u-net. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), 118−122, IEEE. DOI:10.1109/CDMA47397.2020.00026.

    Alfarhan M, Deriche M, Maalej A. 2020. Robust concurrent detection of salt domes and faults in seismic surveys using an improved UNet architecture. IEEE access, 10: 39424−39435. DOI:10.1109/ACCESS.2020.3043973.

    Aloisio A, Battista LD, Alaggio R, et al. 2021. Assessment of structural interventions using Bayesian updating and subspace-based fault detection methods: The case study of S. Maria di Collemaggio basilica, L'Aquila, Italy. Structure and Infrastructure Engineering, 17(2): 141−155. DOI:10.1080/15732479.2020.1731559.

    An Y, Guo J, Ye Q, et al. 2021. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Computers & Geosciences, 153: 104776. DOI:10.1016/j.cageo.2021.104776.

    Ao Y, Lu W, Xu P, et al. 2021. Seismic dip estimation with a domain knowledge constrainedtransfer learning approach. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−16. DOI:10.1109/TGRS.2021.3061438.

    Ashraf U, Zhang H, Anees A, et al. 2020. Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network. Applied Sciences, 10(11): 3864. DOI:10.3390/app10113864.

    Bi Z, Wu X, Geng Z, et al. 2021. Deep relative geologic time: A deep learning method for simultaneously interpreting 3‐D seismic horizons and faults. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB021882. DOI:10.1029/2021JB021882.

    Cunha A, Pochet A, Lopes H, et al. 2020. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Computers & Geosciences, 135: 104344. DOI:10.1016/j.cageo.2019.104344.

    Di H, Li C, Smith S, et al. 2021. Imposing interpretational constraints on a seismic interpretation convolutional neural network. Geophysics, 86(3): IM63−IM71. DOI:10.1190/geo2020-0449.1.

    Dou Y, Li K, Zhu J, et al. 2021. Attention-based 3-D seismic fault segmentation training by afew 2-D slice labels. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−15. DOI:10.1109/TGRS.2021.3113676.

    Dou Y, Li K, Zhu J, et al. 2022. MD loss: Efficient training of 3-D seismic fault segmentation network under sparse labels by weakening anomaly annotation. IEEE Transactions on Geoscience and Remote Sensing, 1−13.

    Dou YM, Li KW, Dong MH, et al. 2024. FaultSSL: Seismic fault detection via semisupervised learning. Geophysics, 89(3): M79−M91. DOI:10.1190/geo2023-0550.1.

    Dou YM, Li KW. 2024. 3D seismic fault detection via contrastive-reconstruction representation learning. Expert Systems with Applications, 123617. DOI:10.1016/j.eswa.2024.123617.

    Feng C, Gao G, Zhang S, et al. 2022. Fault slip potential induced by fluid injection in the Matouying enhanced geothermal system (EGS) field, Tangshan seismic region, North China. Natural Hazards and Earth System Sciences, 22(7): 2257−2287. DOI:10.5194/nhess-22-2257-2022.

    Feng T, Zhang M, Xu L, et al. 2022. Machine learning‐based earthquake catalog and tomography characterize the middle‐northern section of the Xiaojiang fault zone. Seismological Society of America, 93(5): 2484−2497. DOI:10.1785/0220220116.

    Gong Y, Zhu C, Zhu G, et al. 2024. Seismic fault identification in coal mines based on the self-organizing map-gray wolf optimizer-support vector machine algorithm. Interpretation, 12(1): B1−B15. DOI:10.1190/INT-2023-0025.1.

    He T, Wu B, Zhu X. 2021. Seismic data consecutively missing trace interpolation based on multistage neural network training process. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI:10.1109/LGRS.2021.3089585.

    Hosseini-Fard E, Roshandel-Kahoo A, Soleimani-Monfared M, et al. 2022. Automatic seismic image segmentation by introducing a novel strategy in histogram of oriented gradients. Journal of Petroleum Science and Engineering, 209: 109971. DOI:10.1016/j.petrol.2021.109971.

    Hu G, Hu Z, Liu J, et al. 2020. Seismic fault interpretation using deep learning-based semantic segmentation method. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI:10.1109/LGRS.2020.3041301.

    Isaac DB, Abu El Ata AS. 2023. Improvement of seismic data quality and recognition of fault discontinuities through seismic data conditioning applications: A case study of Issaran oil field, Gulf of Suez, Egypt. Journal of Petroleum Exploration and Production Technology, 13(2): 591−607. DOI:10.1007/s13202-022-01574-2.

    Jang J, So BD, Yuen DA. 2023. A machine learning algorithm with random forest for recognizing hidden control factors from seismic fault distribution. Geosciences Journal, 27(1): 113−126. DOI:10.1007/s12303-022-0029-7.

    Khayer K, Hosseini Fard E, Roshandel Kahoo A, et al. 2023. Integration of feature extraction, attribute combination and image segmentation for object delineation on seismic images. Acta Geophysica, 71(1): 275−292. DOI:10.1007/s11600-022-00921-5.

    Laudon C, Qi J, Rondon A, et al. 2021. An enhanced fault detection workflow combining machine learning and seismic attributes yields an improved fault model for Caspian Sea asset. First break, 39(10): 53−60. DOI:10.3997/1365-2397.fb2021075.

    Lefevre M, Souloumiac P, Cubas N, et al. 2020. Experimental evidence for crustal control over seismic fault segmentation. Geology, 48(8): 844−848. DOI:10.1130/G47115.1.

    Li JT, Wu XM, Hu ZX. 2021. Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−11. DOI:10.1109/TGRS.2021.3057857.

    Li S, Yang C, Sun H, et al. 2019. Seismic fault detection using an encoder–decoder convolutional neural network with a small training set. Journal of Geophysics and Engineering, 16(1): 175−189. DOI:10.1093/jge/gxy015.

    Li W, Wang J. 2021. Residual learning of cycle-GAN for seismic data denoising. IEEE access, 9: 11585−11597. DOI:10.1109/ACCESS.2021.3049479.

    Li X, Li K, Xu Z, et al. 2023. Fault-Seg-Net: A method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Computers and Geotechnics, 158: 105412. DOI:10.1016/j.compgeo.2023.105412.

    Li X, Li K, Xu Z, et al. 2024. Fault-Seg-LNet: A method for seismic fault identification based on lightweight and dynamic scalable network. Engineering Applications of Artificial Intelligence, 127: 107316. DOI:10.1016/j.engappai.2023.107316.

    Li X, Li, K. 2024. Fault-attri-attention: A method for fault identification based on seismic attributes attention. Neural Computing and Applications, 36(7): 3645−3661. DOI:10.1007/s00521-023-09265-7.

    Lima G, Zeiser FA, Da Silveira A, et al. 2024. An encoder–decoder deep neural network for binary segmentation of seismic facies. Computers & Geosciences, 183: 105507. DOI:10.1016/j.cageo.2023.105507.

    Lin L, Zhong Z, Cai Z, et al. 2022. Automatic geologic fault identification from seismic data using 2. 5 D channel attention U-net. Geophysics, 87(4): IM111−IM124. DOI:10.1190/geo2021-0805.1.

    Liu ZN, Zhou C, Hu GM, et al. 2020, May. Interpretability-guided convolutional neural networks for seismic fault segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4312−4316). IEEE. DOI:10.1109/ICASSP40776.2020.9053472.

    Lyu B, Qi J, Machado G, et al. 2019. Seismic fault enhancement using spectral decomposition assisted attributes. In SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 1938−1942. DOI:10.1190/segam2019-3215703.1.

    Ma X, Yao G, Zhang F, et al. 2023. 3D Seismic Fault Detection Using Recurrent Convolutional Neural Networks with Compound Loss. IEEE Transactions on Geoscience and Remote Sensing, 61: 1−15. DOI:10.1109/TGRS.2023.3275951.

    Mahadik R, Singh G, Routray A. 2021. Multispectral coherence analysis for better fault visualization in seismic data. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI:10.1109/LGRS.2021.3076213.

    Michie EA, Mulrooney MJ, Braathen A. 2021. Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: A case study from the Horda Platform, with implications for CO2 storage. Solid Earth Discussions, 12(6): 1259–1286. DOI:10.5194/se-12-1259-2021.

    Mizutani A, Yomogida K, Tanioka Y. 2020. Early tsunami detection with near-fault ocean-bottom pressure gauge records based on the comparison with seismic data. Journal of Geophysical Research: Oceans, 125(9): e2020JC016275. DOI:10.1029/2020JC016275.

    Martín-Martín M, Bullejos M, Cabezas D, et al. 2023. Using Python libraries and k-Nearest neighbors algorithms to delineate syn-sedimentary faults in sedimentary porous media. Marine and Petroleum Geology, 153: 106283. DOI:10.1016/j.marpetgeo.2023.106283.

    Mousavi J, Radad M, Soleimani Monfared M, et al. 2022. Fault enhancement in seismic images by introducing a novel strategy integrating attributes and image analysis techniques. Pure and Applied Geophysics, 179(5): 1645−1660. DOI:10.1007/s00024-022-03014-y.

    Mustafa A, Rastegar R, Brown T, et al. 2024. Visual attention guided learning with incomplete labels for Seismic Fault Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 62: 1−12. DOI:10.1109/TGRS.2024.3370037.

    Noori M, Hassani H, Javaherian A, et al. 2019. Automatic fault detection in seismic data using Gaussian process regression. Journal of Applied Geophysics, 163: 117−131. DOI:10.1016/j.jappgeo.2019.02.018.

    Otchere DA, Tackie-Otoo BN, Mohammad MAA, et al. 2022. Improving seismic fault map through data conditioning using a pre-trained deep convolutional neural network: A case study on Groningen field. Journal of Petroleum Science and Engineering, 213: 110411. DOI:10.1016/j.petrol.2022.110411.

    Palo P, Routray A, Mahadik R, et al. 2023. Fault detection in seismic data using graph convolutional network. The Journal of Supercomputing, 79(11): 12737−12765. DOI:10.1007/s11227-023-05173-8.

    Ren K, Zou G, Zhang S, et al. 2023. Fault identification and reliability evaluation using an SVM model based on 3-D seismic data volume. Geophysical Journal International, 234(1): 755−768. DOI:10.1093/gji/ggad095.

    Share PE, Allam AA, Ben-Zion Y, et al. 2019. Structural properties of the San Jacinto fault zone at Blackburn Saddle from seismic data of a dense linear array. Pure and Applied Geophysics, 176: 1169−1191. DOI:10.1007/s00024-018-1988-5.

    Sheng M, Chu R, Peng Z, et al. 2022. Earthquakes triggered by fluid diffusion and boosted by fault reactivation in Weiyuan, China due to hydraulic fracturing. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB022963. DOI:10.1029/2021JB022963.

    Titos M, Gutiérrez L, Benítez C, et al. 2023. Multi-station volcano tectonic earthquake monitoring based on transfer learning. Frontiers in Earth Science, 11: 1204832. DOI:10.3389/feart.2023.1204832.

    Ul Islam MS. 2020. Using deep learning-based methods to classify salt bodies in seismic images. Journal of Applied Geophysics, 178: 104054. DOI:10.1016/j.jappgeo.2020.104054.

    Visini F, Valentini A, Chartier T, et al. 2020. Computational tools for relaxing the fault segmentation in probabilistic seismic hazard modelling in complex fault systems. Pure and Applied Geophysics, 177: 1855−1877. DOI:10.1007/s00024-019-02114-6.

    Vu MT, Jardani A. 2022. Mapping discrete fracture networks using inversion of hydraulic tomography data with convolutional neural network: SegNet-Fracture. Journal of Hydrology, 609: 127752. DOI:10.1016/j.jhydrol.2022.127752.

    Vu MT, Jardani, A. 2022. Multi-task neural network in hydrological tomography to map the transmissivity and storativity simultaneously: HT-XNET. Journal of Hydrology, 612: 128167. DOI:10.1016/j.jhydrol.2022.128167.

    Waheed UB, Alkhalifah T, Haghighat E, et al. 2021. PINNtomo: Seismic tomography using physics-informed neural networks. arXiv preprint arXiv: 2104.01588. DOI:10.48550/arXiv.2104.01588.

    Wang QZ, Zhu ZY, Ding JC, et al. 2023. Research and application of intelligent fault detection method based on multi-scale fusion and Enhancement. In International Field Exploration and Development Conference, Singapore: Springer Nature Singapore, 543-553. DOI:10.1007/978-981-97-0483-5_53.

    Wang Z, Li B, Liu N, et al. 2020. Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI:10.1109/LGRS.2020.3034960.

    Wei XL, Zhang CX, Kim SW, et al. 2022. Seismic fault detection using convolutional neural networks with focal loss. Computers & Geosciences, 158: 104968. DOI:10.1016/j.cageo.2021.104968.

    Wu J, Liu B, Zhang H, et al. 2021. Fault detection based on fully convolutional networks (FCN). Journal of Marine Science and Engineering, 9(3): 259. DOI:10.3390/jmse9030259.

    Wu J, Shi Y, Wang W. 2022. Fault imaging of seismic data based on a modified u-net with dilated convolution. Applied Sciences, 12(5): 2451. DOI:10.3390/app12052451.

    Wu X, Liang L, Shi Y, et al. 2019. Multitask learning for local seismic image processing: fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophysical Journal International, 219(3): 2097−2109. DOI:10.1093/gji/ggz418.

    Wu X, Liang L, Shi Y, et al. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35−IM45. DOI:10.1190/geo2018-0646.1.

    Xu F, Li Z, Wen B, et al. 2021. The use of 3D convolutional autoencoder in fault and fracture network characterization. Geofluids, 1-11. DOI:10.1155/2021/6650823.

    Yan Z, Liu S, Gu H. 2019. Fault image enhancement using a forward and backward diffusion method. Computers & Geosciences, 131: 1−14. DOI:10.1016/j.cageo.2019.06.004.

    Yan Z, Zhang Z, Liu S. 2021. Improving performance of seismic fault detection by fine-tuning the convolutional neural network pre-trained with synthetic samples. Energies, 14(12): 3650. DOI:10.3390/en14123650.

    Yuan Z, Huang H, Jiang Y, et al. 2019. An enhanced fault-detection method based on adaptive spectral decomposition and super-resolution deep learning. Interpretation, 7(3): T713−T725. DOI:10.1190/INT-2018-0180.1.

    Zeng A, Yan L, Huang Y, et al. 2021. Intelligent detection of small faults using a support vector machine. Energies, 14(19): 6242. DOI:10.3390/en14196242.

    Zeng L, Niu Y, Ren W, et al. 2024. A method for intelligent identification of faults in seismic using an attention-based ES-UNet network with model re-training learning. Journal of Applied Geophysics, 105344. DOI:10.1016/j.jappgeo.2024.105344.

    Zhang R, Sun Q, Mao Y, et al. 2022. Accelerating hydraulic fracture imaging by deep transfer learning. IEEE Transactions on Antennas and Propagation, 70(7): 6117−6121. DOI:10.1109/TAP.2022.3161325.

    Zhang Z, Chen R, Ma J. 2024. Improving seismic fault recognition with Self-Supervised Pre-Training: A Study of 3D transformer-based with multi-scale decoding and fusion. Remote Sensing, 16(5): 922. DOI:10.3390/rs16050922.

    Zhou R, Yao X, Hu, G, et al. 2021. Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophysical Prospecting, 69(6): 1218−1234. DOI:10.1111/1365-2478.13097.

    Zhou R, Yao X, Wang Y, et al. 2021. Seismic fault detection with progressive transfer learning. Acta Geophysica, 69: 2187−2203. DOI:10.1007/s11600-021-00668-5.

    Zini JE, Rizk Y, Awad M. 2019. A deep transfer learning framework for seismic data analysis: A case study on bright spot detection. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3202−3212. DOI:10.1109/TGRS.2019.2950888.

  • 加载中

(9)

(5)

计量
  • 文章访问数:  52
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2024-08-19
录用日期:  2025-03-21
网络出版日期:  2025-05-10
刊出日期:  2025-06-30

目录