日本海西部大陆坡自生碳酸盐的特征与成因

徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春. 日本海西部大陆坡自生碳酸盐的特征与成因[J]. 海洋地质与第四纪地质, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041
引用本文: 徐兆凯, 崔镇勇, 林东日, 李铁刚, 李安春. 日本海西部大陆坡自生碳酸盐的特征与成因[J]. 海洋地质与第四纪地质, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041
XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041
Citation: XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. doi: 10.3724/SP.J.1140.2009.02041

日本海西部大陆坡自生碳酸盐的特征与成因

  • 基金项目:

    国家重点基础研究发展规划项目(2007CB815903)

    韩国海洋研究院研究项目(PM50101)

    中国科学院知识创新工程重要方向性项目(KZCX2-YW-211)

    国家自然科学基金重点项目(90411014)

    国家自然科学基金项目(40576032,40506016)

详细信息
    作者简介: 徐兆凯(1978-),男,博士后,主要从事海洋地质学研究,E-mail:zhaokaixu@126.com
  • 中图分类号: P736.3

CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA

  • 对日本海西部大陆坡沉积物柱状样中的自生碳酸盐样品进行了X射线衍射、扫描电镜、地球化学和碳氧同位素组成的系统研究。X射线衍射和扫描电镜分析结果表明,碳酸盐主要组成矿物为颗粒状自生高镁方解石微晶,放射状自生文石微晶仅在一个层位出现。结合碳酸盐的地球化学组成,认为研究区碳酸盐来自于富Ca2+、Mg2+和HCO3-流体的沉淀。中度亏损的13C (-33.85‰~-39.53‰)表明碳来自于甲烷的厌氧氧化,同时,这也是研究区海底存在甲烷冷泉的重要证据。重氧同位素比值(5.28‰~5.31‰)则指示着富18O流体来源,而该流体应源于天然气水合物的分解。综上可知,研究区碳酸盐来自于研究区甲烷冷泉上升流的沉淀,指示着海底更深处天然气水合物的存在与分解。
  • 加载中
  • [1]

    Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. Geological Society of America Bulletin, 1987, 98:147-156.

    [2]

    Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits:examples from the Florida escarpment[J]. Palaios, 1992, 7:361-375.

    [3]

    Bohrmann G, Meinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J]. Geology, 1998, 26:647-650.

    [4]

    Aloisi G, Pierre C, Rouchy J M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation[J]. Earth and Planetary Science Letters, 2000, 184:321-338.

    [5]

    Naehr T H, Rodriguez N M, Bohrmann G, et al. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:285-300.

    [6]

    Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge:Classification, distribution, and origin of authigenic lithologies[C]//Natural Gas Hydrates:Occurrence, Distribution, and Detection. Washington, DC:American Geophysical Union, 2001:99-114.

    [7]

    Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67:3403-3421.

    [8]

    陆红锋,刘坚,陈芳,等.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J].地学前缘,2005,12(3):268-276.

    [LU Hongfeng, LIU Jian, CHEN Fang, et al. Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the offshore area of southwest Taiwan, South China Sea:Evidence for gas hydrate occurrence[J]. Earth Science Frontiers, 2005, 12(3):268-276.]

    [9]

    Chen Z, Yan W, Chen M H, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J]. Chinese Science Bulletin, 2006, 51:1228-1237.

    [10]

    Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments:Implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241:93-109.

    [11]

    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177:129-150.

    [12]

    Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge:Offshore southeastern North America[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:301-313.

    [13]

    Matsumoto R, Okuda Y, Aoyama C, et al. Methane plumes over a marine gas hydrate system in the eastern margin of the Sea of Japan[C]//Joint Meeting Earth and Planetary Science. Tokyo, 2005.

    [14]

    Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk:precipitation processes at cold seep sites[J]. Earth and Planetary Science Letters, 2002, 203:165-180.

    [15]

    Cook H E, Johnson P D, Matti J C, et al. Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory[C]//Initial Reports of the DSDP XXVⅢ. Washington DC:U.S. Govt. Printing Office, 1975:997-1007.

    [16]

    Druckman Y. Subrecent manganese-bearing stromatolites along shorelines of the Dead Sea in Phanerozoic Stromatolites[C]//Phanerozoic Stromatolites. Berlin:Springer-Verlag, 1981:197-208.

    [17]

    Chfetz H S, Folk R L. Travertines:Depositional morphology and the bacterially constructed constituents[J]. Journal of Sedimentary Petrology, 1984, 54:289-316.

    [18]

    Roberts H H, Aharon P, Carney R, et al. Seafloor responses to hydrocarbon seeps, Louisiana continental slope[J]. Geo-Marine Letters, 1990, 10:232-243.

    [19]

    Ginsburg G, Soloviev V, Matveeva T, et al. Sediment grain-size control on gas hydrate presence, sites 994, 995, and 997[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 164. College Station, TX (Ocean Drilling Program), 2000:237-245.

    [20]

    Takeuchi R, Machiyama H, Matsumoto R. Methane seep, chemosynthetic communities, and carbonate crusts on the Kuroshima Knoll, offshore Ryukyu islands[C]//Proceedings of the Fourth International Conference on Gas Hydrate. Yokohama, 2002:97-101.

    [21]

    Chen Y F, Matsumoto R, Paull C K, et al. Methane-derived authigenic carbonates from the northern Gulf of Mexico-MD02 Cruise[J]. Journal of Geochemical Exploration, 2007, 95:1-15.

    [22]

    Naehr T H, Eichhubl P, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments:A comparative study[J]. Deep-Sea Research, 2007, 54:1268-1291.

    [23]

    Lumsden D N, Chimahusky J S. Relationship between dolomite nonstoichiometry and carbonate facies parameters[C]//Concepts and Models of Dolomitizaion. SEPM Special Publication, 1980, 28:123-137.

    [24]

    Dickson J A D. Transformation of echinoid Mg calcite skeletons by heating[J]. Geochimica et Cosmochimica Acta, 2001, 65:443-454.

    [25]

    Burton E A, Walter L M. Relative precipitation rates of aragonite and Mg calcite from sea water:Temperature or carbonate ion control[J]. Geology, 1987, 15:111-114.

    [26]

    Burton E A. Controls on marine carbonate cement mineralogy:review and reassessment[J]. Chemical Geology, 1993, 105:163-179.

    [27]

    Luff R, Greinert J, Wallmann K, et al. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites[J]. Chemical Geology, 2005, 216:157-174.

    [28]

    赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.[ZHAO Yiyang, YAN Mingcai. Geochemistry of Sediments of the China Shelf Sea[M].Beijing:Science Press, 1994.]

    [29]

    Lee T H, Hyun J H, Mok J S, et al. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea[J]. Geo-Marine Letters, 2008, 28:153-159.

  • 加载中
计量
  • 文章访问数:  931
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2008-11-14
修回日期:  2008-12-28

目录