氧同位素古高程计研究新进展

刘晓燕, 袁四化, 徐海. 氧同位素古高程计研究新进展[J]. 海洋地质与第四纪地质, 2009, 29(2): 139-147. doi: 10.3724/SP.J.1140.2009.02139
引用本文: 刘晓燕, 袁四化, 徐海. 氧同位素古高程计研究新进展[J]. 海洋地质与第四纪地质, 2009, 29(2): 139-147. doi: 10.3724/SP.J.1140.2009.02139
LIU Xiaoyan, YUAN Sihua, XU Hai. RECENT RESEARCH PROGRESS IN OXYGEN-ISOTOPE PALEOALTIMETRY[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 139-147. doi: 10.3724/SP.J.1140.2009.02139
Citation: LIU Xiaoyan, YUAN Sihua, XU Hai. RECENT RESEARCH PROGRESS IN OXYGEN-ISOTOPE PALEOALTIMETRY[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 139-147. doi: 10.3724/SP.J.1140.2009.02139

氧同位素古高程计研究新进展

  • 基金项目:

    国家自然科学基金项目(40673071)

详细信息
    作者简介: 刘晓燕(1982-),女,硕士生,环境科学专业,E-mail:xiaoyanliu2008@gmail.com
  • 中图分类号: P597

RECENT RESEARCH PROGRESS IN OXYGEN-ISOTOPE PALEOALTIMETRY

  • 通过解读大气降水的氧同位素组成和现代温度与海拔之间的关系,可以揭示山脉水系及湖相碳酸盐沉积中的稳定氧同位素与海拔高度存在一定的经验关系。氧同位素古高程计对理解山脉演化提供了关键的高度信息。这种方法可用于定量估算山脉古海拔,为反演山脉隆升历史提供了新的研究思路。总结了前人对青藏高原隆升高度的估计,并对比其他方法与此方法的差异,发现此方法在具体应用方面还存在一定的局限性。由于受采样点选取、曲线拟合模式等多方面因素的制约,在应用过程中应给予充分考虑。
  • 加载中
  • [1]

    Sahagian D L, Maus J E. Basalt vesicularity as a measure of atmosphere pressure and paleoelevation[J]. Nature, 1994, 372:449-452.

    [2]

    Brook E J, Brown E T, Kurz M D, et al. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al[J]. Geology, 1995, 23(12):1063-1066.

    [3]

    Forest C E, Wolfe J A, Molnar P, et al. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate[J]. Geological Society of America Bulletin, 1999, 111(4):497-511.

    [4]

    Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421:622-625.

    [5]

    Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2000, 183:215-229.

    [6]

    Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau:paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 2000, 28:339-342.

    [7]

    Poage M A, Chamberlain C P. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters:considerations for studies of paleoelevation change[J]. American Journal of Science, 2001, 301:1-15.

    [8]

    Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry:implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188:253-268.

    [9]

    Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439:677-682.

    [10]

    Rowley D B, Garzione C N. Stable isotope-based Paleoaltimetry[J]. Annual Review of Earth and Planetary Science, 2007, 35:463-508.

    [11]

    Mulch A, Chamberlain C P. The rise and growth of Tibet[J]. Nature, 2006, 439:670-671.

    [12]

    吴珍汉, 赵逊, 叶培盛, 等. 根据湖相沉积碳氧同位素估算青藏高原古海拔高度[J]. 地质学报, 2007, 81(9):1277-1289.

    [WU Zhenhan, ZHAO Xun, YE Peisheng, et al. Paleo-elevation of the Tibetan Plateau inferred from Carbon and oxygen isotopes of lacustrine deposits[J]. Acta Geologica Sinica, 2007, 81(9):1277-1289.]

    [13]

    Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 14(4):436-468.

    [14]

    Drummond C N, Wilkinson B H, Lohmann K C, et al. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 101:67-79.

    [15]

    Siegenthaler U, Oeschger H. Correlation of 18O in precipitation with temperature and altitude[J]. Nature, 1980, 285:314-317.

    [16]

    Chamberlain C P, Poage M A. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals[J]. Geology, 2000, 28(2):115-118.

    [17]

    于津生, 张鸿斌, 虞福基, 等. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 1980, 2:113-121.[YU Jinsheng, ZHANG Hongbin, YU Fuji, et al. Oxygen isotopic composition of meteoric water in the eastern part of Xizang[J]. Geochemistry, 1980

    , 2:113-121.]

    [18]

    田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部降水稳定同位素变化与季风活动[J]. 地球化学, 2001, 30(3):217-223.

    [TIAN Lide, YAO Tandong, SUN Weizhen, et al. Stable isotope variation of precipitation in the middle of Qinghai-Xizang Plateau and monsoon activity[J]. Geochemistry, 2001, 30(3):217-223.]

    [19]

    张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17(5):738-747.

    [ZHANG Yinghua,WU Yanqing,WEN Xiaohu, et al. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 2006, 17(5):738-747.]

    [20]

    姚檀栋, 孙维贞, 蒲健辰, 等. 内陆河流域系统降水中的稳定同位素——乌鲁木齐河流域降水中δ18O与温度关系研究[J]. 冰川冻土, 2000, 22(1):15-22.

    [YAO Tandong, SUN Weizhen, PU Jianchen, et al. Characteristics of stable isotope in precipitation in the inland area-A case study of the relation between δ18O in precipitation and temperature in ürumqi River, China[J]. Journal of Glaciology and Geocryology, 2000, 22(1):15-22.]

    [21]

    Ingraham N L, Taylor B E. Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada[J]. Water Resource Research, 1991, 1(27):77-90.

    [22]

    [23]

    Peixoto J P, Oort A H. The atmospheric branch of the hydrological cycle and climate[C]//Variations in the Global Water Budget, ed. A. Street. Reidel. 1983:5-65.

    [24]

    刘进达, 刘恩凯, 赵迎昌, 等. 影响中国大气降水稳定同位素组成的影响因素分析[J]. 勘察科学技术, 1997(4):14-18.[LIU Jinda, LIU Enkai, ZHAO Yingchang, et al. Analysis of the chief factors influencing the stability isotope composition of China atmosphere precipitation[J]. Technology of Survey Science, 1997

    (4):14-18.]

    [25]

    Ingraham N L, Lyles B, Jacobson R L. Stable isotopic study of precipitation and spring discharge in southern Nevada[J]. Journal of Hydrology, 1991, 125:243-258.

    [26]

    章新平, 姚檀栋. 全球降水中氧同位素比率的分布特点[J]. 冰川冻土, 1994, 16(3):202-210.

    [ZHANG Xinping, YAO Tandong. World spatial characteristics of oxygen isotope ratio in precipitation[J]. Journal of Glaciology and Geocryology, 1994, 16(3):202-210.]

    [27]

    章新平, 姚檀栋. 青藏高原现代降水中dδ18O/dT的变化[J]. 冰川冻土, 1995, 17(4):308-314.

    [ZHANG Xinping, YAO Tandong. Variation of dδ18O/dT in precipitation in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1995, 17(4):308-314.]

    [28]

    Tandong Y, Thompson L G, Thompson E M, et al. Climatological significance of δ18O in north Tibetan ice cores[J]. Journal of Geophysical Research, 1997, 101:29531-29537.

    [29]

    田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化[J]. 冰川冻土, 2000, 22(2):159-164.

    [TIAN Lide, YAO Tandong, SUN Weizhen, et al. Study on stable isotope fractionation during water evaporation in the middle of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2000, 22(2):159-164.]

    [30]

    章新平, 姚檀栋, 中尾正义, 等. 青藏高原及其毗邻地区降水中稳定同位素成分的经向变化[J]. 冰川冻土, 2002, 24(3):245-253.

    [ZHANG Xinping, YAO Tandong, Masayoshi Nakawo, et al. Meridianal variation of stable isotopic compositions in precipitation of the Tibetan Plateau and its adjacent regions[J]. Journal of Glaciology and Geocryology, 2002, 24(3):245-253.]

    [31]

    章新平, 姚檀栋, 田立德, 等. 湿度效应及其对降水中δ18O季节分布的影响[J]. 冰川冻土, 2004, 26(4):420-426.

    [ZHANG Xinping, YAO Tandong, TIAN Lide, et al. Humidity effect and its influence on seasonal distribution of δ18O in precipitation[J]. Journal of Glaciology and Geocryology, 2004, 26(4):420-426.]

    [32]

    张东启, 秦大河, 侯书贵, 等. 珠穆朗玛峰东绒布80.36 m冰芯δ18O记录的气候意义[J]. 中国科学D辑, 2003, 33(3):264-270.

    [ZHANG Dongqi, QIN Dahe, HOU Shugui, et al. Climate significance of the δ18O record in 80.36 m long East Rongbuk Glacier in Everest[J]. Science in China (Series D), 2003, 33(3):264-270.]

    [33]

    Dettman D L, Lohmann K C. Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene[J]. Geology, 2000, 28(3):243-246.

    [34]

    Drummond C N, Wilkinson B H, Lohmann K C. Rock dominate diagenesis of lacustrine magnesian calcite micrite[J]. Carbonates Evaporites, 1993, 8:214-223.

    [35]

    Dettman D L, Reische A K, Lohmann K C. Controls on the stable isotope composition of seasonal growth bands in aragonite fresh-water bivalves (Unionidae)[J]. Geochim. Cosmochim. Acta, 1999, 63:1049-1057.

    [36]

    Dettman D L, Fang X M, Garzione C N. Uplift-driven climate change at 12 Ma:A long δ18O record from the NE margin of the Tibetan Plateau[J]. Earth and Planet Science Letter, 2003, 214:267-277.

    [37]

    Cyr A J, Currie B S, Rowley D B. Geochemical and stable isotopic evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet:Implications for the paleoaltimetry of Late Eocene Tibetan Plateau[J]. Geology, 2005, 113:517-533.

    [38]

    Mulch A, Graham S A, Chamberlain C P. Hydrogen isotopes in Eocene River Gravels and paleoelevation of the Sierra Nevada[J]. Science, 2006, 313:87-89.

    [39]

    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255:1663-1670.

    [40]

    Molnar P, England P, Martiod J. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development[J]. Reviews of Geophysics, 1993, 34:357-396.

    [41]

    李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1):1-12.

    [LI Jijun. Studies on the geomorphological evolution of the Qinghai-Xizang(Tibetan) Plateau and Asian monsoon[J]. Marine Geology and Quaternary Geology, 1999, 19(1):1-12.]

    [42]

    施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54(1):10-21.

    [SHI Yafeng, LI Jijun, LI Bingyuan, et al. Uplift of the Qinghai-Xizang(Tibetan) Plateau and East Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1):10-21.]

    [43]

    Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(1):50-54.

    [44]

    徐仁, 陶君容, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15(1):103-119.

    [XU Ren, TAO Junrong, SUN Xiangjun. On the discovery of a Quercus Semicarpifolia bed in Mount Xixiabangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15(1):103-119.]

    [45]

    施雅风, 刘东生. 希夏邦马峰科学考察初步报告[J]. 科学通报, 1964, 10:928-938.[SHI Yafeng, LIU Tungsheng. Initial report of scientific exploration of the Mount Xixiabangma[J]. Chinese Science Bulletin, 1964

    , 10:928-938.]

    [46]

    Broccoli A J, Manabe S. The effects of orography on mid latitute Northern Hemisphere dry climates[J]. Journal of Climate, 1992, 5:1181-1201.

    [47]

    Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. Journal of Geology, 1993, 101:177-190.

    [48]

    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.

    [49]

    Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877):159-163.

    [50]

    吴珍汉, 吴中海, 胡道功, 等. 青藏高原腹地中新世早期古大湖的特征及其构造意义[J]. 地质通报, 2006, 25(7):782-791.

    [WU Zhenhan, WU Zhonghai, HU Daogong, et al. Features of early Miocene large paleolakes in the interior of the Qinghai-Tibet Plateau and their tectonic significance[J]. Geological Bulletin of China, 2006, 25(7):782-791.]

    [51]

    Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogen[J]. Geology, 2005, 33(3):181-184.

    [52]

    Quade J, Cerling T E, Bowman J R. Development of Asian Monson revealed by marked ecological shift during the latest Miocene in Northern Pakistan[J]. Nature, 1989, 342:163-166.

    [53]

    Quade J, Cerling T E. Expansion of C4 grasses in the late Miocene of Northern Pakistan:evidence from stable istopoes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115:91-116.

    [54]

    [55]

    张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合[J]. 地球科学——中国地质大学学报, 2007, 32(5):587-602.

    [ZHANG Kexin,WANG Guocan, CHEN Fenning, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(5):587-602.]

    [56]

    潘桂棠, 王培生, 徐耀荣, 等. 青藏高原新生代构造演化[M]. 北京:地质出版社,1990.[PAN Guitang, WANG Peisheng, XU Yaorong, et al. Tectonic Evaluation of Qinghai-Xizang Plateau in the Cenozoic[M]. Beijing:Geological Publishing House,1990.]

    [57]

    孙鸿烈, 郑度. 青藏高原形成演化与发展[M]. 广州:广东科技出版社,1998.[SUN Honglie, ZHENG Du. Formation, Evolution and Development of Qinghai-Xizang Plateau[M]. Guangzhou:Guangdong Sceince & Technolgy Press, 1998.]

    [58]

    肖序常, 李廷栋. 青藏高原的构造演化与隆升机制[M]. 广州:广东科学技术出版社,2000:191-232.[XIAO Xuchang, LI Tingdong. Tectonic Evaluation and Uplift Mechanism of Qinghai-Xizang Plateau[M]. Guangzhou:Guangdong Sceince & Technolgy Press, 2000:191

    -232.]

    [59]

    Tapponnier P, Zhiqin X, Roger F. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294:1671-1677.

    [60]

    [61]

    Garzione C N, Dettmanc D L, Hortone B K. Carbonate oxygen isotope paleoaltimetry:evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212:119-140.

    [62]

    Ghosh P, Adkins J, Affek H, et al. 13C -18O bonds in carbonate minerals:a new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):39-56.

    [63]

    Garzione C N, Molnar P, Libarkin J C, et al. Rapid late Miocene rise of the Bolivian Altiplano:evidence for removal of mantle lithosphere[J]. Earth and Planet Science Letter, 2006, 241:543-556.

    [64]

    Ghosh P, Garzione C N, Eiler J M. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates[J]. Science, 2006, 311(51):1-15.

  • 加载中
计量
  • 文章访问数:  1021
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2008-12-06
修回日期:  2009-01-16

目录