青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应

张菀漪, 张成君, 安娟, 巩俊成, 郭景. 青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应[J]. 海洋地质与第四纪地质, 2011, 31(1): 135-141. doi: 10.3724/SP.J.1140.2011.01135
引用本文: 张菀漪, 张成君, 安娟, 巩俊成, 郭景. 青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应[J]. 海洋地质与第四纪地质, 2011, 31(1): 135-141. doi: 10.3724/SP.J.1140.2011.01135
ZHANG Wanyi, ZHANG Chengjun, AN Juan, GONG Juncheng, GUO Jing. CONTENT OF MG IN THE CALCITE AS A LAKE SALINITY PROXY IN THE NORTHWEST INLAND CHINA: A CASE OF PRIMARY RESEARCH IN LAKE KOUCHA[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 135-141. doi: 10.3724/SP.J.1140.2011.01135
Citation: ZHANG Wanyi, ZHANG Chengjun, AN Juan, GONG Juncheng, GUO Jing. CONTENT OF MG IN THE CALCITE AS A LAKE SALINITY PROXY IN THE NORTHWEST INLAND CHINA: A CASE OF PRIMARY RESEARCH IN LAKE KOUCHA[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 135-141. doi: 10.3724/SP.J.1140.2011.01135

青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应

  • 基金项目:

    国家自然科学基金资助项目(40773064、40041004)

详细信息
    作者简介: 张菀漪(1985-),女,在读硕士,从事环境地球化学研究,E-mail:sunny0211@163.com
  • 中图分类号: P595

CONTENT OF MG IN THE CALCITE AS A LAKE SALINITY PROXY IN THE NORTHWEST INLAND CHINA: A CASE OF PRIMARY RESEARCH IN LAKE KOUCHA

  • 通过对青藏高原东南缘560 cm的寇查湖湖心矿物组成、碳酸盐矿物含量以及方解石中镁含量分析,表明方解石中镁含量可能是一个潜在的湖泊盐度指标。湖泊沉积物中总碳酸盐含量有时并不与环境介质的变化一致,其原因主要是沉积物中总碳酸盐主要由方解石组成,而高盐度水体中有较少的方解石的形成。根据5个14C AMS年代分析建立的年代模式,重建了该湖泊3万年来的环境演变过程,560~410 cm (?30~15 kaBP)为河流相沉积;410~320 cm (15~7.6 kaBP)湖泊开始发育,湖泊水体盐度上升成淡水-微咸水,变化较大;320~180 cm (7.6~2.6 kaBP)为湖泊稳定发展时期,但是该时期的湖泊水体盐度较高,成为较咸水的湖泊;180~100 cm (2.6~1.4 kaBP)湖泊水体淡化;100~40 cm (1.4~0.6 kaBP)湖泊水体盐度又有所上升,成为微咸水湖;40~0 cm (0.6 kaBP)以来湖泊水体盐度在早期下降,但大约3000年以来盐度则逐渐上升。
  • 加载中
  • [1]

    王苏民,李建仁. 湖泊沉积——研究历史气候的有效手段——以青海湖、岱海为例[J]. 科学通报,1991,1:54-56.[WANG Sumin, LI Jianren. Lacustrine sediments-An effective method to research the paleoclimate-as example of Lake Qinghai and Lake Daihai[J]. Chinese Science Bulletin, 1991

    , 1:54-56.]

    [2]

    Emrich K, Ehhalt D H, Vogel J C. Carbon isotope fractionation during the precipitation of calcium carbonate[J]. Earth and Planetary Science Letters, 1970, 8:363-371.

    [3]

    Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite:effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56:419-430.

    [4]

    Zhang C J,Mischke S, Zheng M P, et al. The carbon and oxygen isotopic composition of surface-sediment carbonate in Bosten Lake (Xinjiang, China) and its controlling factors[J]. Acta Geologica Sinica, 2009, (83)2:386-395.

    [5]

    Müller G, Iron G, Forstner U. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment[J]. Naturwissenschaften, 1972, 59(4):158-164.

    [6]

    Ling X. Potential evapotranspiration. In:Sun H. (Ed.). The National Physical Atlas of China[M]. China Cartographic Publishing House, Beijing, 1999:88.

    [7]

    Fan P, Wang D, Qi R. Analysis on climatic feature and its change in source region of the Yellow River[J]. Journal of Qinghai University, 2004, 22:19-24.

    [8]

    Wang D. Mean temperature. In:Sun H. (Ed.). The National Physical Atlas of China[M]. China Cartographic Publishing House, Beijing, 1999:75-76.

    [9]

    Mischke S, Kramer M, Zhang C J, et al. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 267(1-2):59-76.

    [10]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35:215-230.

    [11]

    Herzschuh U, Kramer A, Mischke S, et al. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra[J]. Quaternary Research, 2009, 71:162-171.

    [12]

    Goldsmith J R, Graf D L. Structural and compositional variations in some natural dolomites[J]. Journal of Geology, 1958, 66:678-693.

    [13]

    oldsmith J R, Heard H C. Subsolidus phase relations in the system CaCO3 -MgCO3[J]. Journal of Geology, 1961, 69:45-74.

    [14]

    Zhang C J,Feng Z D,Yang Q L,et al. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China[J]. The Holocene, 2010, 20(3):1-11.

    [15]

    Mischke S,Herzschuh U, Massmann G, et al. An ostracod -conductivity transfer function for Tibetan lakes[J]. Journal of Paleolimnology, 2007, 38:509-524.

    [16]

    Rohling E J, Pülike H. Centennial-scale climate cooling with a sudden cold event around 8200 years ago[J]. Nature, 2005, 975-979.

    [17]

    Zhang C J,Mischke S, Zheng M P, et al. The carbon and oxygen isotopic composition of surface-sediment carbonate in Bosten Lake (Xinjiang, China) and its controlling factors[J]. Acta Geologica Sinica, 2009, (83)2:386-395.

  • 加载中
计量
  • 文章访问数:  1029
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2010-04-23
修回日期:  2010-07-06

目录