福建宁化天鹅洞2 100~590 aBP石笋记录及区域气候意义

姜修洋, 李志忠, 沈川洲, 李金全. 福建宁化天鹅洞2 100~590 aBP石笋记录及区域气候意义[J]. 海洋地质与第四纪地质, 2011, 31(3): 117-122. doi: 10.3724/SP.J.1140.2011.03117
引用本文: 姜修洋, 李志忠, 沈川洲, 李金全. 福建宁化天鹅洞2 100~590 aBP石笋记录及区域气候意义[J]. 海洋地质与第四纪地质, 2011, 31(3): 117-122. doi: 10.3724/SP.J.1140.2011.03117
JIANG Xiuyang, LI Zhizhong, SHEN Chuanzhou, LI Jinquan. 2100~590 ABP STALAGMITE STABLE ISOTOPE RECORDS FROM TIAN'E CAVE AND THEIR REGIONAL CLIMATE SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 117-122. doi: 10.3724/SP.J.1140.2011.03117
Citation: JIANG Xiuyang, LI Zhizhong, SHEN Chuanzhou, LI Jinquan. 2100~590 ABP STALAGMITE STABLE ISOTOPE RECORDS FROM TIAN'E CAVE AND THEIR REGIONAL CLIMATE SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 117-122. doi: 10.3724/SP.J.1140.2011.03117

福建宁化天鹅洞2 100~590 aBP石笋记录及区域气候意义

  • 基金项目:

    国家自然科学基金项目(41002061)

    福建省公益类基金项目(2010R1037-3)

    福建省自然科学基金项目(2010J05093)

详细信息
    作者简介: 姜修洋(1981-),男,讲师,博士,从事第四纪环境演变研究,E-mail:strawjxy@msn.com
  • 中图分类号: P532

2100~590 ABP STALAGMITE STABLE ISOTOPE RECORDS FROM TIAN'E CAVE AND THEIR REGIONAL CLIMATE SIGNIFICANCE

  • 选择位于典型东亚季风区我国东南部福建省宁化县天鹅洞一支石笋样品(TE2),通过3个30Th年龄和96组稳定同位素测试,重建了2 100~590 aBP期间平均分辨率为17年的氧碳同位素时间变化序列。整段石笋δ18O振幅达2.1‰,在平均值约-6.8‰上下波动,指示了此时期东亚夏季风强度的长期演化趋势和百年尺度振荡信息。该δ18O记录在2 100~700 aBP时段整体呈现出偏正的趋势,这也与同位于东亚季风区的长江中游和尚洞石笋记录趋势一致,共同记录了此时段夏季风强度总体减弱的过程。在百年尺度上,太阳活动减弱时期对应于石笋氧同位素偏正时期,支持在百年尺度上太阳活动对季风强度的驱动机制。石笋碳同位素最显著的特征是在870~730 aBP期间从-10‰偏负到-14‰,振幅达到4‰,说明区域植被发生了明显的改变,人类活动干扰有可能是造成这种变化的原因。
  • 加载中
  • [1]

    An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8):743-762.

    [2]

    He Y, Theakstone W H, Zhang Z L, et al. Asynchronous Holocene climatic change across China[J]. Quaternary Research, 2004, 61:52-63.

    [3]

    Dong J G, Wang Y J, Cheng H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China[J]. The Holocene, 2010, 20(2):257-264.

    [4]

    Fleitmann D, Burns S J, Manginic A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26:170-188.

    [5]

    Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14000 years[J]. Quaternary Science Reviews, 2009, doi:10.1016/j.quascirev.2008.11.011.

    [6]

    Jiang W Y, Guo Z T, Sun X J, et al. Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia):Holocene variability of the East Asian monsoon[J]. Quaternary Research, 2006, 65:411-420.

    [7]

    Jung S J A, Davies G R, Ganssen G M, et al. Synchronous Holocene sea surface temperature and rainfall variations in the Asian monsoon system[J]. Quaternary Science Reviews, 2004, 23:2207-2218.

    [8]

    Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291:21-31.

    [9]

    Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445:74-77.

    [10]

    Tan L C, Cai Y J, Cheng H, et al. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:432-439.

    [11]

    Tan M, Liu T S,Hou J Z, et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003,30(12):1617-1620.

    [12]

    Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322:940-942.

    [13]

    Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266:221-232.

    [14]

    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon:links to solar changes and North Atlantic climate[J].Science,2005,308:854-857.

    [15]

    Qian W, Lin X. Regional trends in recent precipitation indices in China[J]. Meteorology and Atmospheric Physics, 2005, 90:193-207.

    [16]

    Steinhilber F, Beer J, Fr hlich C. Total solar irradiance during the Holocene[J]. Geophys Res.Lett., 2009, 36, L19704, doi:10.1029/2009GL040142.

    [17]

    Stuiver M, Braziunas T F. Sun, ocean, climate and atmospheric 14CO2:an evaluation of causal and spectral relationships[J]. The Holocene,1993, 3(4):289-305.

    [18]

    Rind D. The sun's role in climate variations[J]. Science, 2002, 296:673-677.

    [19]

    Geel B V, Raspopov O M, Renssen H, et al. The role of solar forcing upon climate change[J]. Quaternary Science Reviews, 1999, 18:331-338.

    [20]

    Julien Emile-Geay, Mark Cane, Richard Seager, et al. El Niño as a mediator of the solar influence on climate[J]. Paleoceanography, 2007, 22(3):3210-3221.

    [21]

    Dorale J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from Coldwater cave, Northeast Iowa[J]. Science, 1992, 258:1626-1630.

    [22]

    Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421:833-837.

    [23]

    Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites:Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20):3443-3457.

    [24]

    Genty D. Palaeoclimate research in Villars cave (Dordogne,SW-France)[J]. International Journal of Speleology, 2008, 37(3):173-191.

    [25]

    Couchoud I, Genty D, Hoffmann D, et al. Millennial-scale climate variability during the Last Interglacial recorded in a speleothem from south-western France[J]. Quaternary Science Review, 2010, doi:10.1016/j.quascirev.2009.08.014.

    [26]

    罗维均, 王世杰, 刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例[J]. 地球化学, 2007, 36(4):344-350.

    [LUO Weijun, WANG Shijie, LIU Xiuming. Biomass effect on carbon isotope ratio of modern calcite deposition and its mechanism:A case study of 4 caves in Guizhou Province, China[J]. Geochimica, 2007, 36(4):344-350.]

    [27]

    邱红烈. 中国福建省亚热带山地4000年来植被变化的孢粉记录[J]. 亚热带资源与环境学报, 2006,1(1):11-23.

    [QIU Honglie. A 4000-year pollen record of vegetation change from the subtropical mountains of Fujian Province, China[J]. Journal of Subtropical Resources and Environment, 2006, 1(1):11-23.]

    [28]

    刘申,罗艳,黄钰辉,等. 鼎湖山五种植被类型群落生物量及其径级分配特征[J]. 生态科学, 2007, 26(5):387-393.

    [LIU Shen, LUO Yan, HUANG Yuhui, et al. Studies on the community biomass and its allocations of five forest types in Dinghushan nature reserve[J]. Ecological Science, 2007, 26(5):387-393.]

  • 加载中
计量
  • 文章访问数:  942
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2010-07-19
修回日期:  2010-09-16

目录