DISTRIBUTION PATTERN OF BIOGENIC COMPONENTS IN SURFACE SEDIMENTS OF THE NORTHERN BERING SEA AND THEIR PALEOCEANOGRAPHIC IMPLICATIONS
-
摘要: 对中国首次和第3次北极科学考察在白令海北部所采取的29个表层沉积物中的TOC、生源Opal和CaCO3含量等进行了研究,结果发现,TOC的高值出现在外陆架至中陆架区,其次为海盆区,白令海峡至内陆架最低;Opal的高值出现在海盆至陆坡边缘区,其次为外陆架至中陆架,白令海峡至内陆架最低;CaCO3的高值出现在内陆架至中陆架区,外陆架至海盆最低。外陆架至中陆架区高的TOC和Opal与该区现代上层水体中较高的叶绿素浓度和营养盐含量有关,反映了上层水体季节性的浮游植物勃发和高的初级生产力。内陆架至中陆架区域相对高的CaCO3可能与浮游植物颗石藻Emiliania huxleyi长期持续的勃发有关,而外陆架至海盆低的CaCO3可能与CaCO3溶解作用相关。外陆架和中陆架高的TOC和Opal可能来源于浮游生物的勃发和有机碳的输入。它们的Corg/N值介于6~9之间,说明其有机质主要来源于海洋自生的沉积,有机碳的输入可能受生物泵的控制。TOC和Opal的相关性分析显示了较高的相关系数(0.71),反映有机碳与硅藻关系密切,硅藻等浮游植物的初级生产力可能控制着生物泵对碳的吸收和释放。Abstract: Biogenic components in total 29 surface sediments, which were taken from the northern Bering Sea during the First and Third Chinese National Arctic Expedition cruises, are analyzed for probing into the relationship between surface primary productivity, chlorophyll and nutrient conditions in this area. The results show that the highest TOC percentages appear on the outer-middle shelf, with the higher in the basin, and the lowest in the area from the inner shelf to the Bering Strait; the highest biogenic opal percentages appear in the basin and slope, with the higher on the outer-middle shelf, and the lowest in the area from the inner shelf to the Bering Strait. On the contrary, the highest CaCO3 percentages are found on the inner-middle shelf, and the lowest on the outer shelf and slope and in the basin. High TOC and opal percentages on the outer-middle shelf are related to high chlorophyll and nutrient levels in the upper water column, suggesting that this area has the seasonal phytoplankton bloom and high primary productivity. Relative high CaCO3 on the outer-middle shelf are associated with the long-term bloom of phytoplankton coccolithophore Emiliania huxleyi, and low CaCO3 in the area from the outer shelf to the basin are linked with calcium carbonate dissolution. Phytoplankton bloom and organic carbon input are responsible for increasing organic carbon and opal percentages on the outer to middle shelf. Corg/N ratio in surface sediments ranges dominantly in 6~9, implying that the organic carbon is originated mainly from marine source and controlled by biological pump process. High correlative coefficient (0.71) between organic carbon and biogenic opal shows a closer relationship between organic carbon and diatom. Primary productivity of diatom and other phytoplankton can control the absorption and release of carbon by the biological pump.
-
-
[1] Takahahsi K. The Bering Sea and Okhotsk Sea:modern and past paleoceanographic changes and gateway impact[J]. Journal of Asian Earth Science, 1998, 16(1):49-58.
[2] Takahashi K, Fujitani N, Yanada M. Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990-2000[J]. Progress in Oceanography, 2002, 55:95-112.
[3] Chen L, Gao Z. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas[J]. Deep-Sea Research Ⅱ, 2007, 54:2619-2629.
[4] Takahashi K. The Okhotsk and Bering Seas:critical marginal seas for the land-ocean linkage[C]//Yoshiki Saito et al, Ed. Land-Sea Link in Asia. Proceedings of an international workshop on sediment transport and storage in coastal sea-ocean system, Tsukuba, Japan,1999:341-353.
[5] Grebmeier J M, Overland J E, Moore S E, et al. A major ecosystem shift in the Northern Bering Sea[J]. Science, 2006, 311:1461-1464.
[6] Gorbarenko S A, Wang P, Wang R, et al. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286:97-106.
[7] 王汝建, 陈荣华. 白令海表层沉积物中硅质生物的变化及其环境控制因素[J]. 地球科学——中国地质大学学报, 2004, 29(6):685-690.
[WANG Rujian, CHEN Ronghua. Variations of siliceous microorganisms in surface sediments of the Bering Sea and their environmental control factors[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(6):685-690.]
[8] 王汝建, 陈荣华, 肖文申. 白令海表层沉积物中放射虫的深度分布特征及其海洋学意义[J]. 微体古生物学报, 2005, 22(2):127-135.
[WANG Rujian, CHEN Ronghua, XIAO Wenshen. Depth distribution pattern of radiolarians in surface sediments of the Bering Sea and their oceanographic implications[J]. Acta Micropalaeontologica Sinica, 2005, 22(2):127-135.]
[9] Wang R, Xiao W, Li Q, et al. Polycystine radiolarians in surface sediments from the Bering Sea Green Belt area and their ecological implication for paleoenvironmental reconstructions[J]. Marine Micropaleontology, 2006, 59:135-152.
[10] 程振波, 石学法, 高爱国, 等. 白令海表层物中的放射虫与海洋环境[J]. 极地研究, 2000, 12(1):24-31.
[CHENG Zhenbo, SHI Xuefa, GAO Aiguo, et al. Radiolarian fossils of surface sediments in the Bering Sea and its sedimentary environment[J]. Chinese Journal of Polar Research, 2000, 12(1):24-31.]
[11] 陈荣华, 孟翊, 华棣, 等. 楚科奇海与白令海表层沉积中的钙质和硅质微体化石研究[J]. 海洋地质与第四纪地质, 2001, 21(4):25-30.
[CHEN Ronghua, MENG Yi, HUA Di, et al. Calcareous and siliceous microorganisms in surface sediments of Chukchi and Bering Seas[J]. Marine Geology and Quaternary Geology, 2001, 21(4):25-30.]
[12] 孟翊, 陈荣华, 郑玉龙. 白令海和楚科奇海表层沉积中的有孔虫及其沉积环境[J]. 海洋学报, 2001, 23(6):85-93.
[MENG Yi, CHEN Ronghua, ZHENG Yulong. Foraminifera in the surface sediments of the Bering and Chukchi Seas and their sedimentary environment[J]. Acta Oceanologica Sinica, 2001, 23(6):85-93.]
[13] 陈立奇, 高众勇, 王伟强, 等. 白令海盆pCO2分布特征及其对北极碳汇的影响[J]. 中国科学D辑, 2003, 33(8):781-790.
[CHEN Liqi, GAO Zhongyong, WANG Weiqiang, et al. Distribution characteristics of pCO2 in the Bering Sea basin and its impact on Arctic carbon sink[J]. Science in China (Series D), 2003, 33(8):781-790.]
[14] 陈立奇. 北极海洋环境与海气相互作用研究[M]. 北京:海洋出版社, 2003.[CHEN Liqi. Marine Environment and Air-Sea Interaction in the Arctic Region[M]. Beijing:China Ocean Press, 2003.]
[15] Springer A M, McRoy C P, Flint M V. The Bering Sea Green Belt:shelf-edge processes and ecosystem production[J]. Fisheries Oceanography, 1996, 5(3/4):205-223.
[16] 高生泉, 陈建芳, 李宏亮, 等. 2008年夏季白令海营养盐的分布及其结构状况[J]. 海洋学报, 2011, 33(20):157-165.
[GAO Shengquan, CHEN Jianfang, LI Hongliang, et al. The distribution and structural conditions of nutrients in the Bering Sea in the summer of 2008[J]. Acta Oceanologica Sinica, 2011, 33(20):157-165.]
[17] 林凌, 何剑锋, 张芳, 等. 2008年夏季白令海和北冰洋异养浮游细菌丰度与分布特征[J]. 海洋学报, 2011, 33(2):166-174.
[LIN Ling, HE Jianfeng, ZHANG Fang, et al. 2Heterotrophic bacterial abundance and distribution in the Bering Sea and the Arctic Ocean in the summer of 2008[J]. Acta Oceanologica Sinica, 2011, 33(2):166-174.]
[18] Niebauer H J, Alexander V, Henrichs S M. A time-series study of the spring bloom at the Bering Sea ice edge I. Physical processes, chlorophyll and nutrient chemistry[J]. Continental Shelf Research, 1995, 15(15):1859-1877.
[19] Wang J, Hu H, Mizobata K, et al. Seasonal variations of sea ice and ocean circulation in the Bering Sea:A model-data fusion study[J]. Journal of Geophysical Research, 2009,114, C02011, doi:10.1029/2008JC004727.
[20] Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific influenced northern Bering and Chukchi Sea in the Amerasan Arctic[J]. Progress in Oceanography, 2006, 71:331-361.
[21] 高郭平, 侍茂崇, 赵进平, 等. 1999年白令海夏季水文特征分析[J]. 海洋学报, 2002, 24(1):8-16.
[GAO GuoPing, SHI MaoCong, ZHAO JinPing, et al. Hydrologic features of the Bering Sea in the summer of 1999[J]. Acta Oceanologica Sinica, 2002, 24(1):8-16.]
[22] 高郭平, 董兆乾, 赵进平, 等. 1999年夏季白令海陆坡区海流动力分析[J]. 极地研究, 2003, 15(2):91-101.
[GAO Guoping, DONG Zhaoqian, ZHAO Jinping, et al. Dynamic analysis of current over the continental slope of the east Bering Sea in summer, 1999[J]. Chinese Journal of Polar Research, 2003, 15(2):91-101.]
[23] 王晓宇, 赵进平. 北白令海夏季冷水团的分布及其年际变化研究[J]. 海洋学报, 2011, 33(2):1-10.
[WANG Xiaoyu, ZHAO Jinping. Distribution and inter-annual variations of the cold water on the northern shelf of Bering Sea in summer[J]. Acta Oceanologica Sinica, 2011, 33(2):1-10.]
[24] 中国首次北极科学考察队编. 中国首次北极科学考察报告[R]. 北京:海洋出版社, 2000:1-191.[Team of the first Chinese national Arctic expedition, editor. The Report of First Chinese Arctic Research Expedition[R]. Beijing:China Ocean Press, 2000:1
-191.]
[25] 张海生. 中国第三次北极科学考察报告[R]. 北京:海洋出版社, 2009:1-225.[ZHANG Haisheng.The Report of Third Chinese Arctic Research Expedition[R]. Beijing:China Ocean Press, 2009:1
-225.]
[26] Stax R, Stein R. Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java Plateau[C]//Berger WH, Mayer LW, et al.Proceeding of the ODP, Scientific Results. 1993, 130:573-579.
[27] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in the pelagic marine sediments[J]. Deep Sea Research, 1989, 36(9):1415-1426.
[28] 孙烨忱, 王汝建, 肖文申, 等. 北冰洋西部表层沉积物中生源和陆源粗组分及其沉积环境[J]. 海洋学报, 2011, 33(2):103-114.
[SUN Yechen, WANG Rujian, XIAO Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Acta Oceanologica Sinica, 2011, 33(2):103-114.]
[29] Jones A, Kaiteris P. A vacuum gasometic technique for rapid and precise analysis of calcium carbonate in sediments and soils[J]. J. Sediment. Petrol. 1983,53:655-660.
[30] Kawahata H, Suzuki A, Ahagon N. Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330000 years[J]. Marine Geology, 1998, 149:155-176.
[31] Merico A, Tyrrell T, Lessard E J, et al. Modelling phytoplankton succession on the Bering Sea shelf:role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997-2000[J]. Deep-Sea Research I, 2004, 51:1803-1826.
[32] Iida T, Saitoh S. Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data[J]. Deep-Sea Research Ⅱ, 2007, 54:2657-2671.
[33] 杨清良, 林更铭, 林茂, 等. 楚科奇海和白令海浮游植物的种类组成与分布[J]. 极地研究, 2002, 14(2):114-125.
[YANG Qingliang, LIN Gengming, LIN Mao, et al. Species composition and distribution of phytoplankton in Chukchi Sea and Bering Sea[J]. Chinese Journal of Polar Research, 2002, 14(2):113-125.]
[34] 张芳, 何剑锋, 林凌, 等. 2008年夏季白令海陆架区微型浮游植物分布及环境相关性分析[J]. 海洋学报, 2011, 33(2):134-145.
[ZHANG Fang, HE Jianfeng, LIN Ling, et al. Distribution of picophytoplankton and environmental correlation analysis in Bering Sea shelf during the summer of 2008[J]. Acta Oceanologica Sinica, 2011, 33(2):134-145.]
[35] Kennedy P, Kennedy H, Papadimitriou S. The effect of acidi-fication on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment[J]. Rapid Communication in Mass Spectrometry, 2005, 19:1063-1068.
[36] Emerson S, Hedges J. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3:621-634.
[37] Thunell R C, Miao Q M, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea:Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7:143-162.
[38] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate material in the Amazon River[J]. Limonol. Oceanogr., 1986, 31:717-738.
[39] Suess E, M ller P J. Productivity, sedimentation rate and sedimentary organic matter in the oceans, Ⅱ[C]//Elemental fractionation. Colloques Internationaux du C.N.R.S., 293, Editions du Centre National de la Recherche Scientifique. Paris, 1980:17-26.
[40] Riebesell U, Schloss I, Smetacek V. Aggregation of algae release from melting sea ice:Implications for seeding and sedimentation[J]. Polar Biol., 1991(11):239-248.
[41] Legendre L, Ackley S F, Dieckmann G S, et al. Ecology of sea ice biota. 2. Global significance[J]. Polar Biol., 1992(12):429-444.
[42] Gosselin M, Levasseur M, Wheeler P A, et al. New measurement s of phytoplankton and ice algal production in the Arctic Ocean[J]. Deep Sea Res., 1997, 44:1623-1644.
[43] Tréguer P. Silica and the cycle of carbon in the ocean[J]. Comptes Rendus Geoscience, 2002, 334:3-11.
-
计量
- 文章访问数: 1117
- PDF下载数: 3
- 施引文献: 0