PALEOENVIRONMENTAL CHANGES IN THE OKHOTSK SEA SINCE LATE PLEISTOCENE AND ITS DRIVING FORCE
-
摘要: 鄂霍次克海是北太平洋第二大边缘海,在"海-陆-气-冰"复杂的相互作用下,形成了独特的海洋环境,并以高生产力、季节性海冰覆盖以及作为北太平洋中层水换气源(ventilation)为特征。对晚第四纪鄂霍次克海海冰扩展,表层生产力、表层海水温度以及中层水演化等的研究显示,鄂霍次克海海冰覆盖面积变化与北太平洋亚极区上空大气环流活动中心位置和强度变化有关,黑龙江径流及Soya暖流仅在局部地区和局部时间有影响;海冰扩张和消退不仅影响鄂霍次克海的沉积作用,还影响着表层生产力的演化、中层水团的形成速率及规模,进而影响区域及全球碳循环及北太平洋水团的换气作用。提出了鄂霍次克海未来研究中应该关注的几个主要科学问题,认为了解鄂霍次克海海冰扩张和消退的历史是认识鄂霍次克海古环境演化的钥匙。Abstract: The Okhotsk Sea is the second largest marginal sea in the north Pacific Ocean. The marine environment of the Okhots Sea is very special under the complex interactions among ocean,land,atmosphere and ice,and characterized by high productivity, seasonal sea ice cover, and the ventilation source of the North Pacific Intermediate Water.Our results show that the advance and retreat of sea ice are mainly related to the strength and the active center of the atmosphere circulation over the subarctic Pacific Ocean. The influence of the sea ice cover by the Soya current and the Amur River only exist in a limited area and limited time. The advance and retreat of sea ice influence not only the sedimentation,but also the change in surface productivity and the formation of North Pacific Intermediate Water,and as the result the regional and global carbon cycle and the ventilation of the North Pacific Intermediate Water are also effected. In this study, we propose some key science questions for future study and conclude that the key to understand the paleoenvironmental changes in the Okhotsk Sea is to collect more information about the sea ice advance and retreat in the Okhotsk Sea.
-
Key words:
- paleoproductivity /
- sea ice /
- atmosphere circulation /
- surface circulation /
- late Quaternary /
- Okhotsk Sea
-
-
[1] Nunberg D,Ralf T. Environmental change in the Sea of Okhotsk during the last 1.1 million years[J]. Paleoceanography, 2004, 19:PA4011, doi:4010.1029/2004PA001023.
[2] Gorbarenko S A, Nurnberg D, Derkachev A N, et al. Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea:implication of terrigenous, volcanogenic and biogenic matter supply[J]. Marine Geology, 2002, 183(1-4):107-129.
[3] Wang P. Response of western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4):5-39.
[4] Lapko V V,Radchenko V I. Sea of Okhotsk[J]. Marine Pollution Bulletin, 2000, 41(1-6):179-187.
[5] Oba T M K H K, et al. Paleoenvironmental changes in the Japan Sea during the last 85000 years[J].Paleoceanography, 1991, 6(4):499-518.
[6] Freeland H J, Bychkov A S, Whitney F, et al. WOCE section P1W in the Sea of Okhotsk -1. Oceanographic data description[J]. Journal of Geophysical Research-Oceans, 1998, 103(C8):15613-15623.
[7] Wong C S, Matear R J, Freeland H J, et al. WOCE line P1W in the Sea of Okhotsk -2. CFCs and the formation rate of intermediate water[J]. Journal of Geophysical Research-Oceans, 1998, 103(C8):15625-15642.
[8] Talley L D. An Okhotsk sea-water anomaly-implications for ventilation in the north Pacific[J]. Deep-Sea Research part A-Oceanographic Research Papers, 1991, 38:S171-S190.
[9] You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water[J]. Journal of Geophysical Research-Oceans, 2000, 105(C2):3253-3280.
[10] You Y. Frontal densification and displacement:A scenario of North Pacific Intermediate Water formation[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2010, 57(13-14):1171-1176.
[11] Harada N, Ahagon N, Sakamoto T, et al. Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky[J]. Global and Planetary Change,2006, 53(1-2):29-46.
[12] Ogi M, Tachibana Y, Nishio F, et al. Does the fresh water supply from the Amur river flowing into the sea of Okhotsk affect sea ice formation?[J]. Journal of the Meteorological Society of Japan, 2001, 79(1):123-129.
[13] Ogi M,Tachibana Y. Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge[J]. Geophysical Research Letters, 2006, 33(8):L08709, doi:08710.01029/02006GL025838.
[14] Sakamoto T, Ikehara M, Aoki K, et al. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea[J]. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 2005, 52(16-18):2275-2301.
[15] Nakatsuka T, Yoshikawa C, Toda M, et al. An extremely turbid intermediate water in the Sea of Okhotsk:Implication for the transport of particulate organic matter in a seasonally ice-bound sea[J]. Geophysical Research Letters, 2002, 29(16):1757,doi:1710.1029/2001GL014029.
[16] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19:PA1016, doi:1010.1029/2002PA000808.
[17] Nakatsuka T, Fujimune T, Yoshikawa C, et al. Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk:Implications for lateral material transport and biological productivity[J]. Journal of Geophysical Research-Oceans, 2004, 109:C09S13,doi:10.1029/2003JC001908.
[18] Seki O, Nakatsuka T, Kawamura K, et al. Time-series sediment trap record of alkenones from the western Sea of Okhotsk[J]. Marine Chemistry, 2007, 104(3-4):253-265.
[19] Broerse A T C, Ziveri P,Honjo S. Coccolithophore (CaCO3) flux in the Sea of Okhotsk:seasonality, settling and alteration processes[J]. Marine Micropaleontology, 2000, 39(1-4):179-200.
[20] Gladyshev S, Talley L, Kantakov G, et al. Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water[J]. Journal of Geophysical Research-Oceans, 2003, 108:3186,doi:3110.1029/2001JC000877.
[21] Gorbarenko S A, Basov I A, Chekhovskaya M P, et al. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene:Geochemical and paleontological evidence[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2005, 52(16-18):2174-2185.
[22] Katsuki K,Takahashi K. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary[J]. Deep-Sea Research Part I-Topical Studies in Oceanography, 2005, 52(16-18):2110-2130.
[23] Okazaki Y, Takahashi K, Katsuki K, et al. Late Quaternary paleoceanographic changes in the southwestern Okhotsk Sea:Evidence from geochemical, radiolarian, and diatom records[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2005, 52(16-18):2332-2350.
[24] Gorbarenko S A, Psheneva O Y, Artemova A V, et al. Paleoenvironment changes in the NW Okhotsk Sea for the last 18 kyr determined with micropaleontological, geochemical, and lithological data[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2010, 57(6):797-811.
[25] Ternois Y, Kawamura K, Ohkouchi N, et al. Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr[J]. Geochemical Journal, 2000, 34(4):283-293.
[26] Seki O, Sakamoto T, Sakai S, et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations[J]. Geochemistry Geophysics Geosystems, 2009, 10:Q10007, doi:10010.11029/12009GC002613.
[27] Ternois Y, Kawamura K, Keigwin L, et al. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65(5):791-802.
[28] Matul A, Abelmann A, Tiedemann R, et al. Late Quaternary polycystine radiolarian datum events in the Sea of Okhotsk[J]. Geo-Marine Letters, 2002, 22(1):25-32.
[29] Gorbarenko S A. Stable isotope and lithologic evidence of late-Glacial and Holocene oceanography of the northwestern Pacific and its marginal seas[J]. Quaternary Research, 1996, 46(3):230-250.
[30] Ohkushi K, Itaki T,Nemotoc N. Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific[J]. Quaternary Science Reviews, 2003, 22:1477-1484.
[31] 孙烨忱, 王汝建, 陈建芳,等. 鄂霍次克海南部晚第四纪的古海洋学记录[J]. 海洋地质与第四纪地质, 2009, 29(2):83-90.
[SUN Yechen, WANG Rujian, CHEN Jianfang, et al. Late quaternary paleoceanographic records in the southern Okhotsk Sea[J]. Marine Geology and Quaternary Geology, 2009, 29(2):83-90.]
[32] Andrews J T, Cooper T A, Jennings A E, et al. Late Quaternary iceberg-rafted detritus events on the Denmark Strait Southeast Greenland continental slope (similar to 65 degrees N):Related to north Atlantic Heinrich events?[J]. Marine Geology, 1998, 149(1-4):211-228.
[33] Bischof J, Clark D L,Vincent J S. Origin of ice-rafted debris:Pleistocene paleoceanography in the western Arctic Ocean[J]. Paleoceanography, 1996, 11(6):743-756.
[34] Sakamoto T, Ikehara M, Uchida M, et al. Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr:Age model and ice-rafted debris in IMAGES Core MD01-2412[J]. Global and Planetary Change, 2006, 53(1-2):58-77.
[35] Katsuki K, Khim B K, Itaki T, et al. Sea-ice distribution and atmospheric pressure patterns in southwestern Okhotsk Sea since the Last Glacial Maximum[J]. Global and Planetary Change, 2010, 72(3):99-107.
[36] Armand L K, Crosta X, Romero O, et al. The biogeography of major diatom taxa in Southern Ocean sediments:1. Sea ice related species[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2):93-126.
[37] Justwan A,Koç N. A diatom based transfer function for reconstructing sea ice concentrations in the North Atlantic[J]. Marine Micropaleontology, 2008, 66(3-4):264-278.
[38] Johns L, Wraige E J, Belt S T, et al. Identification of a C25 highly branched isoprenoid (HBI) diene in Antarctic sediments, Antarctic sea-ice diatoms and cultured diatoms[J]. Organic Geochemistry, 1999, 30(11):1471-1475.
[39] Müller J, Wagner A, Fahl K, et al. Towards quantitative sea ice reconstructions in the northern North Atlantic:A combined biomarker and numerical modelling approach[J]. Earth and Planetary Science Letters, 2011, 306(3-4):137-148.
[40] Belt S T, Massé G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice:IP25[J]. Organic Geochemistry, 2007, 38(1):16-27.
[41] Massé G, Rowland S J, Sicre M-A, et al. Abrupt climate changes for Iceland during the last millennium:Evidence from high resolution sea ice reconstructions[J]. Earth and Planetary Science Letters, 2008, 269(3-4):565-569.
[42] ÓCofaigh C, Glacial Landforms, Sediments/Glacimarine Sediments and Ice-Rafted Debris[C]//Encyclopedia of Quaternary Science. Oxford:Elsevier, 2007:932-945.
[43] Khim B-K, Sakamoto T,Harada N. Reconstruction of surface water conditions in the central region of the Okhotsk Sea during the last 180 kyrs[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2011.
[44] Shiga K,Koizumi I. Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records[J]. Marine Micropaleontology, 2000, 38(2):91-117.
[45] Wang W,Wang L. Reconstruction of oceanographic changes based on the diatom records of the central Okhotsk Sea over the last 500000 years[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4):403-411.
[46] Gorbarenko S A, Southon J R, Keigwin L D, et al. Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea:geochemical, lithological and paleontological evidence[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 209(1-4):281-301.
[47] Seki O, Kawamura K, Ikehara M, et al. Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs[J]. Organic Geochemistry, 2004, 35(3):347-354.
[48] Ishiwatari R, Houtatsu M,Okada H. Alkenone-sea surface temperatures in the Japan Sea over the past 36 kyr:warm temperatures at the last glacial maximum[J]. Organic Geochemistry, 2001, 32(1):57-67.
[49] Broecker W. The salinity contrast between the Atlantic and Pacific Oceans during glacial time[J]. Paleoceanography, 1989, 4(2):207-212.
[50] Broecker W S. Salinity history of the Northern Atlantic during the last deglaciation[J]. Paleoceanography, 1990, 5(4):459-467.
[51] Seki O, Kawamura K, Sakamoto T, et al. Decreased surface salinity in the Sea of Okhotsk during the last glacial period estimated from alkenones[J]. Geophysical Research Letters, 2005, 32(8):L08710, doi:08710.01029/02004GL022177.
[52] Honda M C, Imai K, Nojiri Y, et al. The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997-2000)[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2002, 49(24-25):5595-5625.
[53] Takahashi K. The Bering and Okhotsk Seas:modern and past paleoceanographic changes and gateway impact[J]. Journal of Asian Earth Sciences, 1998, 16(1):49-58.
[54] Gorbarenko S A, Khusid T A, Basov I A, et al. Glacial Holocene environment of the southeastern Okhotsk Sea:evidence from geochemical and palaeontological data[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 177(3-4):237-263.
[55] Berger W H, Smetacek V S,Wefer G.Ocean productivity and paleoproductivity-an overview[C]//Productivity of the Oceans present and past:Report of the Dahlem Workshop on Productivity of the Ocean.Berlin:Wiley & Sons, 1989:1-34.
[56] Monserud R A, Tehebakova N M,Denissenko O V. Reconstruction of the mid-Holocene paleoclimate of Siberia using a bioclimatic vegetation model[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 139:15-36.
[57] Narita H, Sato M, Tsunogai S, et al. Biogenic opal indicating less productive northwestern North Pacific during the glacial ages[J]. Geophysical Research Letters, 2002, 29(15):1732, 1710.1029/2001GL014320.
[58] Brunelle B G, Sigman D M, Jaccard S L, et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum[J]. Quaternary Science Reviews, 2010, 29(19-20):2579-2590.
[59] Yasuda I, Kouketsu S, Katsumata K, et al. Influence of Okhotsk Sea intermediate water on the Oyashio and North Pacific Intermediate Water[J]. Journal of Geophysical Research-Oceans, 2002, 107(C12):3237, doi:3210.1029/2001JC001037.
[60] Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean[J]. Paleoceanography, 1998, 13(4):323-339.
[61] Boyle E A. Quaternary deep-water paleoceanography[J]. Science, 1990, 249(4971):863-870.
[62] 王汝建,陈荣华. 白令海晚第四纪的Cycladophora davisiana: 一个地层学工具和冰期亚北极太平洋中层水的替代物[J]. 中国科学D辑:2005, 35(2):149-157.
[WANG Rujian, CHEN Ronghua. Cycladophora davisiana(radiolarian in the Bering Sea during the late Quaternary):a stratigraphic tool and proxy of the glacial subarctic pacific intermediate[J]. Science in China (Series D), 2005, 35(2):149-157.]
[63] Okazaki Y, Seki O, Nakatsuka T, et al. Cycladophora davisiana (Radiolaria) in the Okhotsk Sea:A key for reconstructing glacial ocean conditions[J]. Journal of Oceanography, 2006, 62(5):639-648.
[64] Motoyama I. Origin and evolution of Cycladophora davisiana Ehrenberg (Radiolaria) in DSDP Site 192, Northwest Pacific[J]. Marine Micropaleontology, 1997, 30(1-3):45-63.
[65] Morley J J,Hays J D. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora-davisiana[J]. Earth and Planetary Science Letters, 1983, 66(1-3):63-72.
[66] Bjorklund K R,Ciesielski P F. Ecology, morphology, stratigraphy, and the paleoceanographic significance of Cycladophora-davisiana-davisiana.1.ecology and morphology[J]. Marine Micropaleontology, 1994, 24(1):71-88.
[67] Okazaki Y, Takahashi K, Onodera J, et al. Temporal and spatial flux changes of radiolarians in the northwestern Pacific Ocean during 1997-2000[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2005, 52(16-18):2240-2274.
[68] Morley J J,Hays J D. Cycladophora-davisiana-stratigraphic tool for pleistocene north-Atlantic and inter-hemispheric correlation[J]. Earth and Planetary Science Letters, 1979, 44(3):383-389.
[69] Itaki T, Uchida M, Kim S, et al. Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments:evidence from the radiolarian species Cycladophora davisiana[J]. Journal of Quaternary Science, 2009, 24(8):856-865.
[70] Abelmann A,Gersonde R. Cycladophora-davisiana stratigraphy in Plio-Pleistocene cores from the Antarctic ocean (Atlantic sector)[J]. Micropaleontology, 1988, 34(3):268-276.
[71] Morley J J, Heusser L,Shackleton N J. Late Pleistocene/Holocene radiolarian and pollen records from sediments in the Sea of Okhotsk[J]. Paleoceanography, 1991, 6(1):121-131.
[72] Itaki T,Ikehara K. Middle to late Holocene changes of the Okhotsk Sea Intermediate Water and their relation to atmospheric circulation[J]. Geophysical Research Letters, 2004, 31(24):L24309, doi:24310.21029/22004GL021384.
[73] Horikawa K, Asahara Y, Yamamoto K, et al. Intermediate water formation in the Bering Sea during glacial periods:Evidence from neodymium isotope ratios[J]. Geology, 2010, 38(5):435-438.
[74] 李铁刚, 孙荣涛, 张德玉, 等. 晚第四纪对马暖流的演化和变动:浮游有孔虫和氧碳同位素证据[J]. 中国科学D辑, 2007, 37(5):660-669.
[LI Tiegang, SUN Rongtao, ZHANG Deyu, et al. Evolution and variation of the Tsushima warm current during the late quaternary evidence from planktonic foraminifera, oxygen and carbon isotopes[J]. Science in China (Series D), 2007, 37(5):660-669.]
[75] Keigwin L,Gorbarenko S. Sea level, surface salinity of the Japan Sea, and the Younger Dryas event in the northwestern Pacific Ocean[J]. Quaternary Research, 1992, 37(3):346-360.
[76] Lembke-Jene L, Tiedemann R, Nuernberg D, et al. Millenial to centennial-scale climatic and oceanographic changes in the Okhotsk Sea during the past 15000 years[C]//Geophysical Research Abstracts. European Geosciences Union, 2005:p. 08976.
[77] 邢磊, 赵美训, 张海龙, 等. 冲绳海槽中部过去15 ka来浮游植物生产力和种群结构变化的生物标志物重建[J]. 科学通报, 2008, 53(12):1448-1455.
[XING Lei, ZHAO Meixun, ZHANG Hailong, et al. Biomarker reconstruction of phytoplankton productivity and community strucutre changes in the middle Okinawa Trough during the last 15 ka[J]. Chinese Science Bulletin, 2008, 53(12):1448-1455.]
[78] Dahl K A, Repeta D J,Goericke R. Reconstructing the phytoplankton community of the Cariaco Basin during the Younger Dryas cold event using chlorin steryl esters[J]. Paleoceanography, 2004, 19(1):19-29.
[79] Calvo E, Pelejero C, Logan G A, et al. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles[J]. Paleoceanography, 2004, 19:19, PA2020, doi:2010.1029/2003PA000992.
[80] Zhao M X, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J]. Organic Geochemistry, 2006, 37(1):72-97.
[81] Gadgil S. The Indian monsoon and its variability[J]. Annual Review of Earth and Planetary Sciences, 2003, 31:429-467.
[82] Berger A. Monsoon and general circulation system[J]. Chinese Science Bulletin, 2009, 54(7):1111-1112,doi:1110.1007/s11434-11009-10170-y.
-
计量
- 文章访问数: 1636
- PDF下载数: 4
- 施引文献: 0