辽宁暖和洞石笋δ13C对全新世气候变化的生态响应

张伟宏, 吴江滢. 辽宁暖和洞石笋δ13C对全新世气候变化的生态响应[J]. 海洋地质与第四纪地质, 2012, 32(3): 147-154. doi: 10.3724/SP.J.1140.2012.03147
引用本文: 张伟宏, 吴江滢. 辽宁暖和洞石笋δ13C对全新世气候变化的生态响应[J]. 海洋地质与第四纪地质, 2012, 32(3): 147-154. doi: 10.3724/SP.J.1140.2012.03147
ZHANG Weihong, WU Jiangying. ECOLOGICAL RESPONSE OF δ13C TO HOLOCENE CLIMATE CHANGES FROM STALAGMITE RECORD IN NUANHE CAVE, LIAONING[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 147-154. doi: 10.3724/SP.J.1140.2012.03147
Citation: ZHANG Weihong, WU Jiangying. ECOLOGICAL RESPONSE OF δ13C TO HOLOCENE CLIMATE CHANGES FROM STALAGMITE RECORD IN NUANHE CAVE, LIAONING[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 147-154. doi: 10.3724/SP.J.1140.2012.03147

辽宁暖和洞石笋δ13C对全新世气候变化的生态响应

  • 基金项目:

    国家自然科学基金项目(40972111)

详细信息
    作者简介: 张伟宏(1987-),女,硕士生,自然地理学专业,主要从事全球气候变化研究
  • 中图分类号: P532

ECOLOGICAL RESPONSE OF δ13C TO HOLOCENE CLIMATE CHANGES FROM STALAGMITE RECORD IN NUANHE CAVE, LIAONING

  • 基于辽宁暖和洞年层石笋NH5的7个230Th年龄和962个碳同位素数据,建立了10.6~3.5 kaBP时段全新世气候及生态演化的δ13C序列,其长期演化趋势与北大西洋海表温度变化基本一致。该记录表明,10.6~8.8 kaBP,δ13C值逐渐负偏,由-9.4‰降至-10.3‰,气候逐渐转暖湿;8.8~6.7 kaBP,δ13C值负偏显著,平均值为-11.3‰,此时,气候温暖湿润,对应于全新世适宜期,纹层计数显示其持续时间约为1 945 a;6.7~3.5 kaBP,δ13C值显著正偏,由-11.3‰升至-8.3‰,干旱化趋势明显。石笋δ18O时间序列显示出相似的变化趋势。在6.7 kaBP前后,δ13C、δ18O均快速正偏,纹层计数显示约在40 a内完成气候由暖湿到冷干的突变转型,可能是由于北大西洋海表温度降低和植被-大气系统的反馈作用对太阳辐射减少具有放大效应。
  • 加载中
  • [1]

    Wang Y J, Edwards R L, Cheng H, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294:2345-2348.

    [2]

    Tan M, Liu T S, Hou J Z, et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003, 30:1617-1620.

    [3]

    Yuan D X, Cheng H, Edwards R L, et al. Timing, duration and transition of the last interglacial Asian Monsoon[J]. Science, 2004, 304:575-578.

    [4]

    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:links to solar changes and north Atlantic climate[J]. Science, 2005, 308:854-857.

    [5]

    Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322:940.

    [6]

    Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266:221-232.

    [7]

    Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka:a speleothem from Crevice Cave, Missour, USA[J]. Science, 1998, 282:1871-1874.

    [8]

    Kong X G, Wang Y J, Wu J Y, et al. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science in China (Series D), 2005, 48(12):2174-2181.

    [9]

    Cruz F J, Burns S J, Karmann I, et al. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene[J]. Quaternary Science Reviews, 2006, 25:2749-2761.

    [10]

    Genty D. Palaeoclimate research in Villars Cave (Dordogne, SW-France)[J]. International Journal of Speleology, 2008, 37:173-191.

    [11]

    Baldini J, McDermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios:a 20th century analogue from Wiltshire, England[J]. Earth and Planetary Science Letters, 2005, 240:486-494.

    [12]

    Cosford J, Qing H R, Mattey D, et al. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:235-244.

    [13]

    Amy F, Sahagian D, Luis A, et al. El Nino events recorded by stalagmite carbon isotopes[J]. Science, 2002, 298:565.

    [14]

    Denniston R F, Gonzalez L A, Semken J, et al. Integ-rating stalagmite, vertebrate, and pollen sequences to investigate Holocene vegetation and climate change in the Southern Midwest[J]. Quaternary Research, 1999, 52:381-387.

    [15]

    Fleitmann D, Burns S, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300:1737-1739.

    [16]

    Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26:170-188.

    [17]

    DeMenocal P, Ortiz J, Guilderson T, et al. Abrupt onset and termination of the African Humid Period:rapid climate responses to gradual insolation forcing[J]. Quaternary Science Reviews, 2000, 19:347-361.

    [18]

    Gasse F. Hydrological changes in the African tropics since the last glacial maximum[J]. Quaternary Science Reviews, 2000, 19:189-211.

    [19]

    邵晓华, 汪永进, 程海, 等. 全新世季风气候演化与干旱事件的湖北神农架石笋记录[J]. 科学通报, 2006, 50(1):80-86.

    [SHAO Xiaohua, WANG Yongjin, Cheng Hai, et al. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ18O record from Shennongjia in central China[J]. Chinese Science Bulletin, 2006, 51(2):221-228.]

    [20]

    Fronval T, Jansen E. Eemian and early weichselian (140~60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions[J]. Paleoceanography, 1997, 12:443-462.

    [21]

    Zhou G S, Wang Y H, Jiang Y L. Global change and water-driven IGBP-NECT, northeast China[J]. Earth Science Frontiers, 2002, 9:198-216.

    [22]

    本溪市区地方志编撰办公室. 本溪市志(第一卷)[M]. 新华出版社, 1991:166-168.

    [23]

    Shen C C, Edwards L R, Cheng H. Uranium and thorium isotopic and concentration measurements by magneticsector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185:165-178.

    [24]

    姜修洋, 汪永进, 孔兴功, 等. 130 kaBP左右东亚季风突变过程的洞穴石笋记录[J]. 科学通报, 2005, 50(23):2644-2648.

    [JIANG Xiuyang, WANG Yongjin, KONG Xinggong, et al. Abrupt climate change of East Asian Monsoon at 130 kaBP inferred from a high resolution stalagmite δ18O record[J]. Chinese Science Bulletin, 2003, 50(23):2765-2769.]

    [25]

    Hendy C H, The isotopic geochemistry of speleothems:The calculation of the effects of the different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35:801-824.

    [26]

    Fairchild I, Smith C, Baker A,et al. Modifcation and preservation of environmental signals in speleothems[J]. Earth Science Reviews, 2006, 75:105-153.

    [27]

    Mühlinghaus C, Scholz D, Mangini A, et al. Modelling stalagmite growth and δ13C as a function of drip interval and temperature[J]. Geochimica et Cosmochimica Acta, 2007, 71:2780-2790.

    [28]

    Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillation in western Europe from stalagmite data[J]. Nature, 2003, 421:833-837.

    [29]

    张美良, 朱晓燕, 林玉石, 等. 洞穴石笋的δ13C记录研究[J]. 广西科学, 2006, 13(1):48-51

    , 57.[ZHANG Meiling, ZHU Xiaoyan, LIN Yushi, et al. Study on δ13C isotope records from stalagmites[J]. Guangxi Sciences, 2006, 13(1):48-51, 57.]

    [30]

    莫多闻, 王辉, 李水城. 华北不同地区全新世环境演变对古文化发展的影响[J]. 第四纪研究, 2003, 23(2):200-210.

    [MO Duowen, WANG Hui, LI Shuicheng. Effects of Holocene environmental changes on the development of archaeological cultures in different regions of north China[J]. Quaternary Sciences, 2003, 23(2):200-210.]

    [31]

    喻春霞, 罗运利, 孙湘君. 吉林柳河哈尼湖13.1~4.5cal.kaBP古气候演化的高分辨率孢粉记录[J]. 第四纪研究, 2008,28(5):929-938.

    [YU Chunxia, LUO Yunli, SUN Xiangjun. A high-resolution pollen record from Hani lake, Jilin, northeast China showing climate changes between 13.1 cal.kaBP and 4.5 cal.kaBP[J]. Quaternary Sciences, 2008, 28(5):929-938.]

    [32]

    Schleser G H, Frenze B, Tauer M. Parameters determining carbon isotope ratios in plants[J]. Palaoklimaforschung, 1995, 15:71-96.

    [33]

    王金权, 刘金陵. 长白山区全新世大暖期的氨基酸和碳同位素记录[J]. 微体古生物学报, 2001, 18(4):392-398.

    [WANG Jinquan, LIU Jinling. The records of amino acids and organic carbon isotope for Holocene Megathermal in Changbaishan Area[J]. Acta Micropalaeontologica Sinica, 2001, 18(4):392-398.]

    [34]

    Cui J X, Zhou S Z, Chang H. The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records[J]. Chinese Journal of Oceanology and Limnology, 2009, 27:147-161.

    [35]

    Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates[J]. Science, 1997, 278:1257-1266.

    [36]

    Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14000 years[J]. Quaternary Science Reviews, 2009,28:840-849.

    [37]

    隆浩, 王乃昂, 李育, 等. 猪野泽记录的季风边缘区全新世中期气候环境演化历史[J]. 第四纪研究, 2007, 27(3):371-380.

    [LONG Hao, WANG Naiang, LI Yu, et al. Mid-Holocene climate variations from lake records of the east Asian monsoon margin:a multi-proxy and geomorphological study[J]. Quaternary Sciences, 2007, 27(3):371-380.]

    [38]

    Liew P M, Lee C Y, Kuo C M. Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan[J]. Earth and Planetary Science Letters, 2006, 250:596-605.

    [39]

    吴江滢, 汪永进, 孔兴功. 贵州白骨洞石笋记录的全新世季风气候演化与突变[J]. 海洋地质与第四纪地质, 2006, 26(5):55-60.

    [WU Jiangying, WANG Yongjin, KONG Xinggong. Evolution and abrupt changes of the Holocene Asian monsoon climate recorded by stalagmite in Baigu Cave in Guizhou[J]. Marine Geology and Quaternary Geology, 2006, 26(5):55-60.]

    [40]

    Li C H, Wu Y H, Hou X H. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment[J]. Quaternary International, 2011, 229:67-73.

    [41]

    陈发虎, 吴薇, 朱燕, 等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 2004, 49(1):1-9.

    [CHEN Fahu, WU Wei, Holmes J, et al. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China[J]. Chinese Science Bulletin, 2003, 48(13):1-10.

    [42]

    程捷, 张绪教, 田明中, 等. 青藏高原东北部黄河源区大暖期气候特征[J]. 地质论评, 2004, 50(3):330-337.

    [CHENG Jie, ZHANG Xujiao, TIAN Mingzhong, et al. Climate of the Holocene Megathermal in the source area of the Yellow River, Northeast Tibet[J]. Geological Reviews, 2004, 50(3):330-337.]

    [43]

    Hodell D A, Kanfoush S L, Shemesh A, et al. Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal years BP[J]. Quaternary Research, 2001, 56:191-198.

    [44]

    Brostr M A, Coe M T, Harrison S P, et al. Land surface feedbacks and palaeomonsoons in northern Africa[J]. Geophysical Research Letters, 1998, 25:3615-3618.

    [45]

    李育, 王乃昂, 李卓仑, 等. 石羊河流域全新世孢粉记录及其对气候系统响应争论的启示[J]. 科学通报, 2011, 56(2):161-173.

    [LI Yu, WANG Naiang, LI Zhuolun, et al. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin[J]. Chinese Science Bulletin, 2011, 56(6):535-546.]

    [46]

    Yu Y T, Yang T B, Li J J, et al. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233:149-162.

  • 加载中
计量
  • 文章访问数:  1001
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2011-10-17
修回日期:  2011-12-28

目录