PALEOCEANOGRAPHIC RECORDS OF CORE ZHS-176 FROM THE NORTHERN SOUTH CHINA SEA: OXYGEN ISOTOPE AND ORGANIC CARBON
-
摘要: 对南海北部陆坡ZHS-176孔进行浮游有孔虫氧同位素和有机碳的研究,重建了末次冰期以来的古气候演化历史。ZHS-176孔浮游有孔虫氧同位素分析揭示了末次冰期期间的气候波动,如末次盛冰期、Heinrich事件1、Bølling-Allerød暖期与新仙女木事件在南海北部陆坡均有响应。同时,在全新世阶段存在3个强降水期和3个弱降水期。ZHS-176孔有机碳以生物成因为主,随着夏季风的增强,陆源物质含量增加,但在3 kaBP以后由于华南地区夏季风减弱而导致陆源输入减少。Abstract: A coupled approach based on planktonic foraminiferal oxygen isotope and organic carbon from core ZHS-176 in the northern South China Sea slope is adopted to reconstruct the history of paleoclimatic evolution since the last glacial stage. The planktonic foraminiferal oxygen isotopic oscillations in core ZHS-176 during the last glacial period are coeval with climatic variations recorded in the Greenland ice core and Western Pacific sediment. These variations include the Last Glacial Maximum, Heinrich event 1, Bølling-Allerød, and Younger Dryas. During the Holocene, we also find three periods of strong precipitation stages and three periods of weak precipitation stages. The oxygen isotopic record exhibits correlation with climate records from distant regions, including the high-latitude area of North Atlantic, providing evidence for global tele-connection among regional climates. The biogenic organic carbon is dominated in core ZHS-176, and the content of terrigenous one increases while the East Asian summer monsoon strengthens. But after 3 kaBP, the terrigenous input decreases because of the weakened East Asian summer monsoon in the South China region.
-
Key words:
- South China Sea /
- last glacial /
- Holocene /
- oxygen isotope /
- organic carbon
-
-
[1] 钱建兴. 晚第四纪以来南海古海洋学研究[M]. 北京:科学出版社, 1999.[QIAN Jianxing. A Study of Paleoceanography in the South China Sea During the Late Quaternary[M]. Beijing:Science Press, 1999.]
[2] Liu Z F, Tuo S T, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255:149-155.
[3] Wang P X, Wang L J, Bian Y H, et al. Late Quaternary paleoceanography of the South China Sea:Surface circulation and carbonate cycles[J]. Marine Geology, 1995, 127:145-165.
[4] Jian Z M, Wang L J, Kienast M, et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40000 years[J]. Marine Geology, 1999, 156:159-186.
[5] Wang P X, Li Q Y. The South China Sea-Paleoceanography and Sedimentology[M]. Developments in Paleoenvironmental Research Series, 13, Springer, Berlin, 2009.
[6] Wang L J, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.
[7] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.014C age calibration program[J]. Radiocarbon, 1993, 35:215-230.
[8] Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366:552-554.
[9] Yokoyama Y, Lambeck K, Deckker P D, et al. Timing of the Last Glacial Maximum from observed sea-level minima[J]. Nature, 2000, 406:713-716.
[10] EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429:623-628.
[11] Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176:133-146.
[12] Xiang R, Chen M H, Li Q Y, et al. Planktonic forminiferal records of East Asia monsoon changes in the southern South China Sea during the last 40000 years[J]. Marine Micropaleontology, 2009, doi:10.1016/j.marmicro. 2009.06.004.
[13] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea:toward resolving seasonality[J]. Quaternary Science Reviews, 2008, 27:688-700.
[14] An Z S. The history and variability of East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19:171-187.
[15] Yuan D X, Cheng H, Edwards R L. Timing duration and transitions of the last interglacial monsoon[J]. Science, 2004, 304:575-578.
[16] Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299:2005-2010.
[17] Stocker T F. Past and future reorganizations in the climate system[J].Quaternary Science Reviews, 2000, 19:301-319.
[18] Broecker W S. Was the Younger Dryas triggered by a flood?[J].Science, 2006, 312:1146-1148.
[19] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice core record[J]. Nature, 1993, 364:218-220.
[20] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278:1257-1266.
[21] Stuiver M, Reimer P J, Bard E, et al. Intcal98 radiocarbon age calibration, 24000-0 cal BP[J]. Radiocarbon, 1998, 40:1041-1083.
[22] Shen J, Yang L Y, Yang, X D, et al. Lakes sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China[J]. Science in China (Series D), 2005, 48(3):353-363.
[23] Lin H-L, Peterson L C, Overpeck J T, et al. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera:High-resolution records from the anoxic Cariaco Basin, Venezuela[J]. Paleoceanography, 1997, 12:415-427.
[24] Ge Q, Chu F Y, Xue Z, et al. Paleoenvironmental records from the northern South China Sea since the Last Glacial Maximum[J]. Acta Oceanologica Sinica, 2010, 29(3):46-62.
[25] 杨文光, 郑洪波, 谢昕, 等. 南海北部陆坡沉积记录的全新世早期夏季风极强事件[J]. 第四纪研究, 2008, 28(3):425-430.
[YANG Wenguang., ZHENG Hongbo, XIE Xin, et al. East Asian summer monsoon maximum records in northern South China Sea during the early Holocene[J]. Quaternary Sciences, 2008, 28(3):425-430.]
[26] 施雅风. 中国全新世大暖期气候与环境[M]. 北京:海洋出版社, 1992.[SHI Yafeng. The Climates and Environments of the Holocene Megathermal in China[M]. Beijing:Chinese Ocean Press, 1992.]
[27] Jian Z M, Wang P X, Chen M H, et al. Foraminiferal response to major Pleistocene paleoceanographic changes in the southern South China Sea[J]. Paleoceanography, 2000, 15(2):229-243.
[28] An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19:743-762.
[29] Pflaumann U, Jian Z M. Modern distribution patterns of planktonic foraminifera in the South China Sea and West Pacific:a new transfer technique to estimate regional sea-surface temperature[J]. Marine Geology, 1999, 156:41-83.
[30] Denton G H, Karlen W. Holocene climatic variations-Their pattern and possible cause[J]. Quaternary Research, 1973, 3(2):155-174.
[31] Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature, 2003, 421:354-357.
[32] Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability:A prominent, widespread event 8200yr ago[J]. Geology, 1997, 25:483-486.
[33] Chen F H, Zhu Y, Li J J, et al. Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales:evidence from lake sediment document in Minqin Basin, NW China[J]. Chinese Science Bulletin, 2001, 46(23):1942-1947.
[34] Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400:344-348.
[35] Clarke G K C, Leverington D W, Teller J T, et al. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 aBP cold event[J]. Quaternary Science Reviews, 2004, 23:389-407.
[36] Wu W X, Liu T S. Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China[J]. Quaternary International, 2004, 117:153-166.
[37] 葛倩,刘敬圃,初凤友,等. 全新世事件3与古文化变迁[J]. 地质科技情报, 2010, 29(3):15-22.
[GE Qian, LIU Jingpu, CHU Fengyou, et al. Holocene event 3 and ancient cultural transition[J]. Geological Science and Technology Information, 2010, 29(3):15-22.]
[38] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science, 2005, 308:854-857.
[39] Weiss H, Bradley R S. What drives social collapse?[J] Science, 2001, 291:609-610.
[40] Peng Y B, Xu Y, Jin L Y. Climate changes over eastern China during the last millennium in simulations and reconstructions[J]. Quaternary International, 2009, doi:10.1016/j.quaint.2009.02.013.
[41] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266:221-232.
[42] Crowley T J. Cause of climate change over the past 1000 years[J]. Science, 2000, 289:270-277.
[43] Eddy J A. The Maunder Minimum[J]. Science, 1976, 192:1189-1202.
[44] Robock A. The "Little Ice Age":Northern Hemisphere average observations and model calculations[J]. Science, 1979, 206:1402-1404.
[45] 于革, 刘健. 全球12000 aBP以来火山爆发记录及对气候变化影响的评估[J]. 湖泊科学, 2003, 15(1):11-20.
[YU Ge, LIU Jian. Geological records of volcanic explosions during the last 12000 years and the volcanic impacts on climate changes[J]. Journal of Lake Sciences, 2003, 15(1):11-20.]
[46] Ruddiman W F. Cold climate during the closest Stage 11 analog to recent Millennia[J]. Quaternary Science Reviews, 2005, 24:1111-1121.
[47] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75:97-122.
[48] Tesi T, Miserocchi S, Goni M A, et al. Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy)[J]. Estuarine Coastal and Shelf Science, 2007, 73:431-446.
[49] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J] Organic Geochemistry, 1997, 27:195-212.
[50] Chen M T, Shiau L J, Yu P S, et al. 500000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197:113-131.
[51] Lǒwemark L, Stenke S, Wang C-H, et al. New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity in the South China Sea[J]. Dynamics of Atmospheres and Oceans, 2009, 47:138-153.
[52] Jia G D, Peng P A. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Marine Chemistry, 2003, 82:47-54.
[53] Schultz D, Calder J A. Organic carbon 13C/12C variations in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 1976, 40:381-385.
[54] Hu J F, Sun X S, Peng P A, et al. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records[J]. Quaternary International, 2009, 206:46-51.
[55] Boutton T W. Stable Carbon Isotope Ratios of Natural Materials:Atmospheric, Terrestrial, Marine, and Freshwater Environments[M]//In:Coleman D C, Fry B (Eds.).Carbon isotope techniques. Academic Press, San Diego, 1991:155-172.
[56] Minoura K, Hoshino K, Nakamura T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea:sea-level control on δ13C and δ15N records of sediment organic material[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135:41-50.
[57] Pelejero C. Terrigenous n-alkane input in the South China Sea:high-resolution records and surface sediments[J]. Chemical Geology, 2003, 200:89-103.
[58] Tyson R V. Sedimentary Organic Matter[M]. Chapman and Hall, London, 1995:615.
[59] Muller P J, Erlenkeuser H, von Grafenstein R. Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores[C]. In:Thiede J, Suess E (Eds.). Coastal Upwelling, Its Sediment Record. Part B. Sedimentary Records of Ancient Coastal Upwelling. NATO Conference Series IV, Marine Science. Plenum Press, New York, NY, United States, 1983:365-398.
[60] Huang C Y, Wu S F, Zhao M, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciations[J]. Marine Micropaleonotology, 1997, 32:71-94.
[61] Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea:productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 5:77-90.
[62] Higginson M J, Maxwell J R, Altabet M A. Nitrogen isotope and chlorine paleoproductivity records from the Northern South China Sea:remove vs. local forcing of millennial-and orbital-scale variability[J]. Marine Geology, 2003, 201:223-250.
-
计量
- 文章访问数: 1106
- PDF下载数: 5
- 施引文献: 0