DISTRIBUTION PATTERN OF SUBMARINE HYDROTHERMAL SULFIDE DEPOSITS AND CONTROLLING FACTORS
-
摘要: 基于最新公布的全球热液矿点数据讨论了海底热液多金属硫化物矿体形成的构造环境,探讨了深部岩浆活动、断裂构造以及沉积物盖层等控矿因素对洋中脊多金属硫化物矿体成矿的影响。研究结果表明:海底热液多金属硫化物矿点主要分布于离散型板块边界和汇聚型板块边界;深部岩浆活动和断裂构造是洋中脊热液多金属硫化物成矿最主要的控矿因素;快、慢扩张洋中脊环境深部岩浆活动和断裂构造的差异导致在海底形成了不同规模的多金属硫化物矿体。对认识海底热液多金属硫化物矿床分布与成矿规律、以及开展海底多金属硫化物资源勘查具有一定的指导意义。
-
关键词:
- 海底热液多金属硫化物 /
- 控矿因素 /
- 断裂构造 /
- 深部岩浆活动
Abstract: The latest data on global hydrothermal vent sites are used in this paper to discuss the tectonic settings of submarine polymetallic sulfide deposits and other ore-controlling factors, such as the deep magmatic activity, fault structure and sediment cap. Results show that the submarine hydrothermal polymetallic sulfide vent sites are mainly located at the divergent and convergent plate boundaries; the deep magmatic activity and the fault structures are the most important factors controlling the distribution of the hydrothermal polymetallic sulfide on mid-ocean ridges; and the speed of sea floor spreading contributes to the size of polymetallic sulfide deposits. Conclusions of this study could be used as the reference in the exploration of submarine hydrothermal polymetallic resources. -
-
[1] 郑彦鹏,李官保.海底多金属硫化物形成的区域地质背景条件与控矿因素[J]. 矿物学报,2007(增刊):375-376.[ZHENG Yanpeng, LI Guanbao. Regional geological background conditions and ore-controlling factors of submarine polymetallic sulfide[J]. Acta Mineralogica Sinica, 2007
(Supply):375-376.]
[2] 邓希光. 大洋中脊热液硫化物矿床分布及矿物组成[J]. 南海地质研究, 2007, (1):54-64.[DENG Xiguang. The deposits and mineral compositions of hydrothermal sulfide in Mid-Ocean Ridge[J]. Research of Geology of South China Sea, 2007
, (1):54-64.]
[3] 戴宝章, 赵葵东, 蒋少涌. 现代海底热液活动与块状硫化物矿床成因研究进展[J]. 矿物岩石地球化学通报, 2004, 23(3):246-254.
[DAI Baozhang, ZHAO Kuidong, JIANG Shaodong. Modern sea-floor hydrothermal activity and genesis of massive sulfide deposits:An overview[J]. Bulletin of Mineralogy, Perology and Geochemistry, 2004, 23(3):246-254.]
[4] 侯增谦, 莫宣学. 现代海底热液成矿作用研究现状及发展方向[J]. 地学前缘, 1996, 3(3-4):263
-273.[HOU Zengqian, MO Xuanxue. The present and future investigation of the modern seafloor hydrothermal processes and mineralization[J]. Earth Science Frontiers, 1996, 3(3-4):263-273.]
[5] 林文洲. 现代海底热液成矿作用综述[J]. 成都理工学院学报, 2000, 27(增刊):264-267.[LIN Wenzhou. A summary of modern seafloor hydrothermal mineralization[J]. Journal of Chengdu University of Technology, 2000
, 27(Supply):264-267.]
[6] 吴世迎. 世界海底热液硫化物资源[M]. 北京:海洋出版社, 2000:1-271.[WU Shiying. Global seafloor hydrothermal sulfide resources[M]. Beijing:China Ocean Press, 2000:1
-271.]
[7] 陈弘, 朱本铎, 崔兆国. 海底热液矿床地质和地球化学特点研究[J]. 热带海洋学报, 2006, 25(2):79-84.
[CHEN Hong, ZHU Benduo, CUI Zhaoguo. A study on geological and geochemical characteristics of seafloor hydrothermal polymetallic deposits[J]. Journal of tropical Oceanography, 2006, 25(2):79-84.]
[8] 栾锡武.现代海底热液活动区的分布与构造环境分析[J].地球科学进展,2004,19(6):931-938.
[LUAN Xiwu. Distribution and tectonic environments of the hydrothermal fields[J]. Advances in Earth Science, 2004,19(6):931-938.]
[9] 高爱国.海底热液活动研究综述[J].海洋地质与第四纪地质,1996, 16(1):103-110.
[GAO Aiguo. Summarizing on the study of hydrothermal activities on the seafloor[J]. Marine Geology and Quaternary Geology, 1996, 16(1):103-110.]
[10] 崔汝勇. 大洋中大型热液硫化物矿床的形成条件[J]. 海洋地质动态, 2001, 17(2):1-5.
[CUI Ruyong. Large-scale oceanic hydrothermal sulfide deposits formation conditions[J]. Marine Geology Letters, 2001,17(2):1-5.]
[11] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426:405-412.
[12] Fouquet Y, Charlou J L. Metallogenesis in back-arc environments:the Lau Basin example[J]. Economic Geology, 1993, 88:2254-2181.
[13] Bendel V. The white lady hydrothermal field, North Fiji back arc basin, Southwest Pacific[J]. Economic Geology, 1988, 88:2237-2249.
[14] Nath B N. Hydrothermal Minerals[R]. Geology & Geophysical Sciences, 2007, Lecture notes, 78-83.
[15] Fouquet Y. Where are the large hydrothermal sulfide deposits in the ocean?[J]. Philosophical Transsactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1997, 355:427-441.
[16] Macdonald K C, Fox P J, Perram L J, et al. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities[J]. Nature, 1988, 335:217-225.
[17] Sinton J M, Detrick R S. Mid-Ocean Ridge Magma Chambers[J]. Journal of Geophysical Research, 1992, 97(B1):197-216.
[18] Macdonald K C. Mid-Ocean Ridge Tectonics,Volcanism and Geomorphology[J]. Academic Press, 2001, doi:10. 1006/rwos. 2001. 0094.
[19] Canales J P, Detrick R S, Carbotte S M, et al. Upper crustal structure and axial topography at intermediate spreading ridges:Seismic constraints from the southern Juan de Fuca Ridge[J]. Journal of Geophysical Research, 2005, 110, B12104, doi:10. 1029/2005 JB003630.
[20] Baker E T, German C R. On the global distribution of hydrothermal vent fields[C]//In Mid-Ocean Ridges:Hydrothermal interactions between the lithosphere and oceans, Geophysical Monograph Series 148. American Geophysical Union, 2004:245-266.
[21] Parson L, Sauter D, Mendel V, et al. Evolution of the axial geometry of the Southwest Indian Ocean Ridge between the Melville fracture zone and the Indian Ocean Triple Junction-Implications for segmentation on very Slow-Spreading Ridges[J]. Marine Geophysical Researches, 1997, 19:535-552.
[22] Petersen S, Kuhn K, Kuhn T, et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45'N, Mid-Atlantic Ridge) and its influence on massive sulfide formation[J]. Lithos, 2009, 112:40-56.
[23] Huang P Y, Solomon S C. Centroid depths of mid-ocean ridge earthquakes:Dependence on spreading rate[J]. Journal of Geophysical Research, 1988, 93(13):445-477.
[24] Glasby G P. The relation between earthquakes, faulting and submarine hydrothermal mineralization[J]. Marine Georesources and Geotechnology, 1998, 16(2):145-175.
[25] 李粹中.海底热液多金属矿床的研究现状[J].海洋地质与第四纪地质,1992,12(4):75-86.
[LI Cuizhong. Study of submarine hydrothermal polymetallic ore deposits[J]. Marine Geology and Quaternary Geology, 1992, 12(4):75-86.
[26] Canales J P, Sohn R A, deMartin B J. Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10'N):Implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges[J]. Geochemistry Geophysics Geosystems, 2007,8, Q08007, doi:10.1029/2007GC001629.
[27] Münch U, Halbach P, Fujimoto H. Shipboard scientific party, INDOYO diving cruise(MODE198 leg 3), sea-floor hydrothermal mineralization from the Mt. Jourdanne, Southwest Indian Ridge, JAMSTEC[J]. Deep Sea Research, 2000, 16:125-132.
[28] Robigou V, Delaney J R, Stakes D S. Large massive sulfide deposits in a newly discovered active hydrothermal system, the High-Rise Field, Endeavour Segment, Juan de Fuca Ridge[J]. Geophysical Research Letters, 1993, 20(17):1887-1890.
[29] Kelley D S, Delaney J R, Yoerger D A. Geology and venting characteristics of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge[J]. Geology, 2001, 29:959-962.
[30] Normark W R, Morton J L, Koski R A, et al. Active hydrothermal vents and sulfide deposits on the southern Juan de Fuca Ridge[J]. Geology, 1983, 11:158-163.
[31] Ames D E, Franklin J M, Hannington M D. Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge:An evolving hydrothermal system[J]. Canadian Mineralogist, 1993, 31:997-1024.
[32] 吴世迎.大洋钻探与深海热液作用[J].地球科学进展,1995,10(3):223-228.
[WU Shiying. Ocean drilling and deep-sea hydrothermal activity[J]. Advance in Earth Sciences, 1995, 10(3):223-228.]
[33] Zierenberg R A, Fouquet Y, Miller D J, et al. The deep structure of a sea-floor hydrothermal deposit[J]. Nature, 1998, 392:485-488.
[34] Mottl J M, Wheat C G, Boulegue J. Timing of ore deposits and sill instruction at site 856:Evidence from stratigraphy, alteration, and sediment pore water composition[J]. Proceedings of Ocean Drilling Program, Scientific Results, 1994, 139:679-693.
[35] Giambalvo E R, Steefel C I, Fisher A T, et al. Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 2002, 66(10):1739-1757.
[36] 李文渊.现代海底热液成矿作用[J].地球科学与环境学报,2010,32(1):15-23.
[LI Wenyuan. Hydrothermal Mineralization on the Modern Seafloor[J]. Journal of Earth Sciences and Environment, 2010,32(1):15-23.]
[37] 李军.现代海底热液块状硫化物矿床的资源潜力评价[J].海洋地质动态,2007,23(6):23-30.
[LI Jun. Resource potential assessment of hydrothermal massive sulfide deposits on the modern seafloor[J]. Marine Geology Letters, 2007, 23(6):23-30.]
[38] Herzig P M, Hanning M D. Polymetallic massive sulfides at the modern seafloor A review[J]. Ore Geology Reviews, 1995, 10:95-115.
[39] William S D. Wilcock J R. Mid-ocean ridge sulfide deposits:Evidence for heat extraction from magma chambers or cracking fronts?[J]. Earth and Planetary Science Letters, 1996, 145:49-64.
[40] Curewitz D, Karson J A. Geological consequences of dike intrusion at Mid-Ocean Spreading Centers[C]//Faulting and Magmatism at Mid-Ocean Ridges, Geophysical Monograph Series 106. American Geophysical Union, 1998:117-136.
[41] Fornari D J, Haymon R M, Perfit M R, et al. Axial summit trough of the East Pacific Rise 9°N to 10°N:Geological characteristics and evolution of the axial zone on fast-spreading mid-ocean ridge[J]. Journal of Geophysical Research, 1998, 103(B5):9827-9855.
-
计量
- 文章访问数: 1509
- PDF下载数: 2
- 施引文献: 0