液化过程对海床土性质改造的波浪水槽试验

张丽萍, 贾永刚, 侯伟, 吴琼, 单红仙. 液化过程对海床土性质改造的波浪水槽试验[J]. 海洋地质与第四纪地质, 2013, 33(3): 171-180. doi: 10.3724/SP.J.1140.2013.03171
引用本文: 张丽萍, 贾永刚, 侯伟, 吴琼, 单红仙. 液化过程对海床土性质改造的波浪水槽试验[J]. 海洋地质与第四纪地质, 2013, 33(3): 171-180. doi: 10.3724/SP.J.1140.2013.03171
ZHANG Liping, JIA Yonggang, HOU Wei, WU Qiong, SHAN Hongxian. WAVE FLUME EXPERIMENT ON SEABED RECONSTRUCTION BY LIQUEFACTION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 171-180. doi: 10.3724/SP.J.1140.2013.03171
Citation: ZHANG Liping, JIA Yonggang, HOU Wei, WU Qiong, SHAN Hongxian. WAVE FLUME EXPERIMENT ON SEABED RECONSTRUCTION BY LIQUEFACTION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 171-180. doi: 10.3724/SP.J.1140.2013.03171

液化过程对海床土性质改造的波浪水槽试验

  • 基金项目:

    国家自然科学基金项目(41072215)

详细信息
    作者简介: 张丽萍(1987-),女,硕士,主要从事河口沉积物动力响应方面的研究工作,E-mail:jingyingkuailefeng@163.com
  • 中图分类号: P931.92

WAVE FLUME EXPERIMENT ON SEABED RECONSTRUCTION BY LIQUEFACTION

  • 通过分析模拟波浪连续作用后的液化土床粒度成分、结构及强度变化特征,研究波浪导致底床土液化过程对海床土体性质的改造效应。现场采集黄河口潮滩粉质土,制备波浪水槽的底床进行试验;试验过程中,先后连续施加5、10、15 cm波高的模拟波浪荷载,重复作用两次。选取土床典型区域,分别在模拟波浪作用前后采集原状样品和表层重塑土样,观测土床液化前后土体成分与结构的变化规律,每隔2 h测试贯入强度,并观察土床液化界面变化情况。研究发现,随着液化作用的产生,土床沉积物一定深度范围内出现粒度粗化现象,细粒物质减少,强度增加。土床的成分、结构和强度与液化界面的变化规律及发展速率密切相关。研究成果表明,液化渗流作用对海床成分结构的改造具有重要影响,促使土床中的细粒物质向上输运,液化区域边界粗化,导致成分与结构的变化,而这种分选作用造成了土床强度的大幅提高,揭示出液化是影响粉质土海床成分及强度非均匀化的一个重要因素。
  • 加载中
  • [1]

    Ferré B, Guizien K, Durrieu de MX, et al. Fine-grained sediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion (NW Mediterranean)[J]. Continental Shelf Research, 2005, 25:2410-2427.

    [2]

    Patrick J D, Carl T F, Linda C S, et al. Spatial and temporal variation in cohesive sediment erodibility in the York River estuary, eastern USA:A biologically influenced equilibrium modified by seasonal deposition[J]. Marine Geology, 2009, 267:128-140.

    [3]

    Ian T W, Phillip W F. Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay:Southern Great Barrier Reef, Australia[J]. Continental Shelf Research, 2010, 30:793-805.

    [4]

    Druitt T H. Settling behaviour of concentrated dispersions and some volcanological applications[J]. Journal of volcanology and Geothermal Research, 1995, 65:27-39.

    [5]

    Best J L. Fluidization pipes in volcaniclastic mass flows, Volcan Hudson, southern Chile[J]. Terra Nova, 1989, 1:203-208.

    [6]

    Tzang S Y. Unfluidized soil responses of a silty seabed to monochro-matic waves[J]. Coastal Engineering, 1998, 35:283-301.

    [7]

    单红仙, 刘涛, 陈友媛, 等. 波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究[J]. 工程地质学报, 2008,16(2):216-222.

    [SHAN Hongxian, LIU Tao, CHEN Youyuan, et al. In situ measuremrnt of vertical transfer of sediment in the silty seabed under wave loading in the Yellow River estuarine area[J]. Journal of Engineering Geology, 2008, 16(2):216-222.]

    [8]

    Obhrai C, Nielsen P, Vincent C E. Influence of infiltration on suspended sediment under waves[J]. Coastal Engineering, 2002, 45(2):111-123.

    [9]

    Dohmen-Janssen C M, Hanes D M. Sheet flow and suspended sediment due to wave groups in a large wave flume[J]. Cont. Shelf Res., 2005, 25(3):333-347.

    [10]

    Baldock T E, Holmes P. Seepage effects on sediment transport by waves and currents[J]. Coastal Engineering, 1998, 3601-3614.

    [11]

    Zheng Jiewen, Shan Hongxian, Jia Yonggang, et al. Field tests and observation of wave-loading influence on erodibility of silty sediments in the Huanghe (Yellow River) Estuary, China[J]. Journal of Coastal Research, 2011, 27(4):706-717.

    [12]

    冯玉岩. 土体对波浪响应导致的沉积物运移与微层形成实验研究[D]. 青岛:中国海洋大学, 2007.[FENG Yuyan. Transport of the Sediment and Form of Microsequence Caused by the Response of Silt to Wave[D]. Qingdao:Ocean University of China, 2007.]

    [13]

    董好刚. 循环荷载导致黄河口沉积物成分和结构变异的研究[D]. 青岛:中国海洋大学, 2006.[DONG Haogang. Transformation of Granular Composition and Microstructure of Silt Due to Cyclic Loading in Yellow R. Estuary, China[D]. Qingdao:Ocean University of China, 2006.]

    [14]

    Davidson-Arnott R G D, Langham D R J. The effects of softening on nearshore erosion of a cohesive shoreline[J]. Marine Geology, 2000, 166(1-4):145-162.

    [15]

    Wheatcroft R A, Borgeld J C. Oceanic flood deposits on the northern California shelf:large-scale distribution and small-scale physical properties[J]. Continental Shelf Research, 2000, 20(16):2163-2190.

    [16]

    贾永刚,霍素霞,许国辉,等. 黄河水下三角洲沉积物强度变化原位测试研究[J]. 岩土力学, 2004, 25(6):876-881.

    [JIA Yonggang, HUO Suxia, XU Guohui, et al. Intensity variation of sediments due to wave loading on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2004, 25(6):876-881.]

    [17]

    Jia Y G, Liu X L, Shan H X, et al. The effects of hydrodynamic conditions on geotechnical strength of the sediment in Yellow River delta[J]. International Journal of Sediment Research, 2011, 26(3):318-330.

    [18]

    Kessel T V, Kranenburg C. Wave-induced liquefaction and flow of subaqueous mud layers[J], Coastal Engineering, 1998, 34:109-127.

    [19]

    Alba P D, Thomas P B. Residual strength after liquefaction:A rheological approach[J]. Soil Dynamics and Earthquake Engineering, 2006, 26:143-151.

    [20]

    贾永刚,史文君,单红仙,等. 黄河口粉土强度丧失与恢复过程现场振动试验研究[J],岩土力学,2005, 26(3):351-358.

    [JIA Yonggang, SHI Wenjun, SHAN Hongxian, et al. In-situ test study on silt strength's loss and recovery due to vibration load in the Yellow River mouth[J]. Rock and Soil Mechanics, 2005, 26(3):351-358.]

    [21]

    贾永刚, 董好刚, 单红仙, 等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 2007, 28(10):2029-2035.

    [JIA Yonggang, DONG Haogang, SHAN Hongxian, et al. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 2007, 28(10):2029-2035.]

    [22]

    陈友媛, 刘红军, 贾永刚, 等. 循环荷载作用下海床结构粉质土的液化渗流机理定性研究[J]. 岩土力学,2007,28(8):1631-1635.

    [CHEN Youyuan, LIU Hongjun, JIA Yonggang, et al. Qualitative study on mechanism of liquefaction and seepage of seabed structure silty soil under cyclic loads[J]. Rock and Soil Mechanics, 2007, 28(8):1631-1635.]

    [23]

    张民生, 刘红军, 李晓东, 等. 波浪作用下黄河口粉土液化与"铁板砂"形成机制的模拟试验研究[J]. 岩土力学, 2009, 30(11):3347-3353.

    [ZHANG Minsheng, LIU Hongjun, LI Xiaodong, et al. Study of liquefaction of silty soil and mechanism of development of hard layer under wave actions at Yellow River estuary[J]. Rock and Soil Mechanics, 2009, 30(11):3347-3353.]

    [24]

    Zand Behrad, Tu Wei, Amaya P J, et al. An experimental investigation on liquefaction potential and post-liquefaction shear strength of impounded fly ash[J]. Fuel, 2009, 88:1160-1166.

    [25]

    Dimitrova R S, Yanful E K. Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy[J]. Engineering Geology, 2011, 35:1-15.

    [26]

    Berlamont J E, Ockenden M C, Toorman E A, et al. The characterization of cohesive sediment properties[J]. Coastal Engineering, 1993, 21:105-128.

    [27]

    Sassa S, Sekiguchi H. Wave induced liquefaction densification and re-liquefaction of sandbeds[C]//Centrifuge 98. Edited by Kimura, Kusakabe, Takemura. 1998:391-396.

    [28]

    Tzang S Y, Ou S H. Laboratory flume studies on monochromatic wave-fine sandy bed interactions Part 1. Soil fluidization[J]. Coastal Engineering, 2006, 53:965-982.

    [29]

    Xu G, Sun Y, Wang X, et al. Wave-induced shallow slides and their features on the subaqueous Yellow River delta[J]. Canadian Geotechnical Journal, 2009, 46(12):1406-1417.

    [30]

    孙永福, 董立峰, 宋玉鹏. 黄河水下三角洲粉质土扰动土层特征及成因探析[J]. 岩土力学. 2008, 29(6):1494-1499.

    [SUN Yongfu, DONG Lifeng, SONG Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008, 29(6):1494-1499.]

    [31]

    Tzang S Y, Ou S H, Hsu T W. Laboratory flume studies on monochromatic wave-fine sandy bed interactions Part 2.Sediment suspensions[J]. Coast Eng., 2009, 56(3):230-243.

  • 加载中
计量
  • 文章访问数:  1184
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2012-06-08
修回日期:  2012-11-19

目录