PROGRESS OF LIPID BIOMARKER RESEARCH IN DEEP-SEA HYDROTHERMAL VENT AREAS
-
摘要: 类脂物生物标志化合物(简称类脂物生标)记录了原始生物母质的分子组成信息,是研究极微生物群落、探索生命起源与演化的重要载体。综述了海底热液喷口区类脂物生标的主要研究进展,重点探讨烷烃、脂肪酸、醚类生标的应用及科学意义。类脂物生标研究表明,海底热液喷口区具有独特而又丰富的生物群落,喷口区动物群落与其他深海环境相似物种在饮食结构上有明显差别,它们主要捕食化能自养细菌或古细菌,且不同物种所捕食的微生物种类也具有选择性。为应对喷口区的极端物化环境,热液细菌和古菌形成了独特细胞分子组构。类脂物生标及单体同位素组成显示,喷口区存在嗜热型氨氧化和甲烷缺氧氧化古菌活动,在热液流体富H2的情况下硫酸盐还原菌与产甲烷古菌能够共存,碳限制条件下能产生富13C (-11.8‰~+3.6‰PDB)的类脂物生标。类脂物生标对于揭示热液微生物种群与营养关系、指示热液环境条件、反映热液区甲烷代谢作用以及探索生命起源与进化过程具有重要的研究意义,今后还需加强其应用范围及相关指示性机理等方面的研究。Abstract: Lipid biomarker bears important information of precursor molecular structure, and is an important media for exploring the biological community in extreme environment, the origin of life and the interaction and co-evolution between life and environment. In this paper, we summarized the recent progresses of lipid biomarkers research for hydrothermal vents, and discussed the application of hydrocarbon, fatty acid and ether biomarkers. The deep-sea hydrothermal vent support a rich and unique life community, and the hydrothermal animals select chemosynthetic microbes as their food. Lipid biomarkers and individual isotopic reflected the presence and activity of thermophilic anaerobic ammonium-oxidizing bacteria and methane-oxidizing archaea. High hydrogen concentrations allow the concurrent growth of methanogens and sulfate-reducing bacteria. Under carbon-limited conditions, lipids of microbe can be very rich in 13C(-11.8‰~+3.6‰PDB). Lipid biomarkers has good implication for microbial community characteristics, hydrothermal conditions, methane-metabolized function group and origin and evolution of life, and we proposed that the application range and indicative mechanism of lipid biomarker should be enhanced during the future research.
-
Key words:
- hydrothermal vent /
- lipid /
- biomarkers /
- geomicrobiology
-
-
[1] Zelnio L, Godet K L, Van Dover C L. Scientists as stakeholders in concervation of hydrothermal vent[J]. Conserv Biol, 2011(25):214-222.
[2] Corliss J B, Dymond J, Gordon L I, et al. Submarine Thermal Sprirngs on the Galápagos Rift[J]. Science, 1979, 4385(203):1073-1083.
[3] Takai K, Nakagawa S, Reysenbach A L, et al. Microbial ecology of mid-ocean ridges and back-arc basins[C]. American Geophysical Union, 2006:185-213.
[4] Reysenbach A, Liu Y, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents[J]. Nature, 2006, (442):444-447.
[5] Jannasch H W, Mottl M J. Geomicrobiology of deep-sea hydrothermal vents[J]. Science. 1985, 4715(229):717-725.
[6] Stetter K O. Hyperthermophiles in the history of life[C]. London:JOHN WILEY & SONS, 1996.
[7] Summons R E, Jahnke L L, Simoneit B R T. Lipid biomarkers for bacterial ecosystems:studies of cultured organisms, hydrothermal environments and ancient sediments[C]. London:JOHN WILEY & SONS, 1996.
[8] 王红梅,谢树成,赖旭龙,等. 分子地质微生物学研究方法述评[J]. 地球科学进展. 2005, 20(6):664-670.
[WANG Hongmei, XIE Shucheng, LAI Xulong, et al.Evaluation of the methodology in molecular geomicrobiology[J].Advances in Earth Science, 2005, 20(6):664-670.]
[9] Simoneit B R T, Brault M, Saliot A. Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge[J]. Applied Geochemistry, 1990, 5(1-2):115-124.
[10] Simoneit B, Fetzer J C. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean[J]. Organic Geochemistry, 1996, 24(10-11):1065-1077.
[11] Brault M, Simoneit B R T, Marty J C, et al. Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13°N[J]. Organic Geochemistry, 1988(12):209-219.
[12] Simoneit B R T, Goodfellow W D, Franklin J M. Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley, Northern Juan de Fuca Ridge[J]. Applied Geochemistry, 1992(7):257-264.
[13] Didyk B M, Simoneit B. Petroleum characteristic of the oil in a Guaymas Basin hydrothermal chimney[J]. Applied Geochemistry, 1990, 5(1-2):29-40.
[14] Matsumoto G I, Watanuki K. Geochemical features of hydrocarbons and fatty-acids in sediment of the inland hydrothermal environments of Japan[J]. Organic Geochemistry, 1990, 15(2):199-208.
[15] Pond D W, Gebruk A, Southward E C, et al. Unusual fatty acid composition of storage lipids in the bresilioid shrimp Rimicaris exoculata couples the photic zone with MAR hydrothermal vent sites[J]. Marine Ecology-Progress Series, 2000(198):171-179.
[16] Elvert M, Boetius A, Knittel K, et al. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane[J]. Geomicrobiology Journal, 2003, 20(4):403-419.
[17] Pond D W, Fallick A E, Stevens C J, et al. Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem:Fatty acid and stable isotope evidence[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2008, 55(12):1718-1726.
[18] Bradley A S, Hayes J M, Summons R E. Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem[J]. Geochimica et Cosmochimica Acta, 2009(73):102-118.
[19] Bradley A S, Fredricks H, Hinrichs K U, et al. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field[J]. Organic Geochemistry, 2009, 40(12):1169-1178.
[20] Blumenberg M, Seifert R, Petersen S, et al. Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge[J]. Geobiology, 2007, 5(4):435-450.
[21] Bazylinski D A, Farrington J W, Jannasch H W. Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site[J]. Organic Geochemistry, 1988, 12(6):547-558.
[22] Simoneit B, Lein A Y, Peresypkin V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36 degrees N)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2275-2294.
[23] Simoneit B R T, Kvenvolden K. Comparison of 14C ages of hydrothermal petroleums[J]. Organic Geochemistry, 1994, 5(21):525-529.
[24] Greenwood P F, Arouri K R, Logan G A, et al. Abundance and geochemical significance of C2n dialkylalkanes and highly branched C3n alkanes in diverse Meso-and Neoproterozoic sediments.[J]. Organic Geochemistry, 2004, 35:321-346.
[25] Simoneit B R T, Lein A Y, Peresypkin V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2275-2294.
[26] Nichols P D, Mancuso C A, White D C. Carbon isotopic fractionation in lipids from methanotrophic bacteria:Relevance for interpretation of the geochemical record of biomarkers[J]. Organic Geochemistry, 1994, 6(11):451-461.
[27] Colao A, Desbruyeres D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community[J]. Marine Ecology-An Evolutionary Perspective, 2007, 28(1):15-24.
[28] Hu J F, Meyers P A, Chen G K, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraethers in sediments from the Eastern Lau Spreading Center, South Pacific Ocean[J]. Organic Geochemistry, 2012, 43:162-167.
[29] Brault M, Marty J C, Saliot A. Fatty acid from particulate matter and sediment in hydrothermal environments from the east Pacific Rise, near 13N[J]. Organic Geochemistry, 1984(6):217-222.
[30] Schouten S, Wakeham S G, Hopmans E C, et al. Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane[J]. Applied and Environmental Microbiology, 2003, 69(3):1680-1686.
[31] Byrne N, Strous M, Crépeau V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents[J]. The ISME journal, 2009, 3(1):117-123.
[32] Li J W, Zhou H Y, Peng X T, et al. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney[J]. Journal of Sea Research, 2011, 65(3):333-339.
[33] 陈固魁,胡建芳,杨群慧,等. 南太平洋东部劳盆地扩张中心表层沉积物中甘油二烷基甘油四醚脂类化合物的组成特征及生物地球化学意义[J]. 海洋与湖沼. 2011, 42(3):343-350.
[CHEN Gukui, HU Jianfang, YANG Qunhui, et al.Glycerol Dialkyl Glycerol Tetraether lipids composition and its biogeochemical implications of surface sediments from the eastern Lau spreading center, South Pacific Ocean[J].Oceanologia et Limnologia Sinica, 2011, 42(3):343-350.]
[34] [35] Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean[J]. Organic Geochemistry, 2004, 35(5):573-582.
[36] Jannasch H W. Microbial processes at deep-sea hydrothermal vents[M]. New York:Plenum Press, 1983:677-709.
[37] Guerreiro V, Narciso L, Almeida A J, et al. Fatty acid profiles of deep-sea fishes from the Lucky Strike and Menez Gwen hydrothermal vent fields (mid-atlantic ridge)[J]. Cybium, 2004, 28S(1):33-44.
[38] van de Vossenberg J L C M, Driessen A J M, Zillig W, et al. Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae[J]. Extremophiles, 1998, 2(2):67-74.
[39] Arakawa K, Eguchi T, Kakinuma K. 36-Membered macrocyclic diether lipid is advantageous for archaea to thrive under the extreme thermal environments[J]. Bulletin of the Chemical Society of Japan, 2001(74):347-356.
[40] Sprott G D, Meloche M, Richards J C. Propotions of diether, macrocyclic diether, and tetraether lipids in Methanococcus Jannaschii grown at different temperatures[J]. Journal of Bacteriology, 1991, 173:3907-3910.
[41] Schouten S, Hopmans E C, Schefuss E, et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1-2):265-274.
[42] 张丽梅,贺纪正. 一个新的古菌类群——奇古菌门(Thaumarchaeota)[J]. 微生物学报, 2012, 52(04):411-421.
[Zhang Limei, He Jizheng.A novel archaeal phylum:Thaumarchaeota-A review[J]. Acta Microbiologica Sinica, 2012, 52(04):411-421.]
[43] Kima J H, van der Meer J, Schoutena S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 16(74):4639-4654.
[44] Lincoln S A, Bradley A S, Newman S A, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field[J]. Organic Geochemistry, 2013.(in press).
[45] Morii H, Eguchi T, Nishihara M, et al. A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus[J]. Biochimica et Biophysica Acta, 1998, 1390(3):339-345.
[46] Schouten S, Baas M, Hopinans E C, et al. An unusual isoprenoid tetraether lipid in marine and lacustrine sediments[J]. Organic Geochemistry, 2008, 39(8):1033-1038.
[47] Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Biomedical and Life Sciences, 1999, 86(6):295-300.
[48] Zhang C L, Pancost R D, Sassen R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34(6):827-836.
[49] Hinrichs K U, Sylva S P, Hayes J M, et al. Molecular and isotopic analysis of anaerobic methane oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31:1685-1701.
[50] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
[51] Sassen R, Macdonald I R, Guinasso J N L, et al. Bacterial methane oxidation in sea-floor gas hydrate:significance to life in extreme environments[J]. Geology, 1998, 26:851-854.
[52] Teske A, Hinrichs K, Edgcomb V, et al. Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin Evidence for Anaerobic Methanotrophic Communities[J]. Applied and Environmental Microbiology, 2002, 68(4):1994-2007.
[53] Holler T, Widdel F, Knittel K, et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia[J]. The ISME Journal, 2011, 5:1946-1956.
[54] Kristjansson J K, Schönheit P, Thauer R. Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria:An explanation for the apparent inhibition of methanogenesis by sulfate[J]. Archives of Microbiology, 1982, 131:278-282.
[55] Kelley D S, A K J, Fruh-Green G L, et al. A serpentinite-hosted ecosystem:the Lost City hydrothermal field[J]. Science, 2005, 307:1428-1434.
[56] Summons R E, Franzmann P D, Nichols P D. Carbon isotopic fractionation associated with methylotrophic methanogenesis[J]. Organic Geochemistry, 1998, 28(7-8):465-475.
[57] Londry K L, Dawson K G, Grover H D, et al. Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri[J]. Organic Geochemistry, 2008, 39(5):608-621.
[58] Schrenk M O, Kelley D S, Bolton S A, et al. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge[J]. Environmental Microbiology, 2004, 6(10):1086-1095.
[59] 周怀阳,李江涛,彭晓彤. 海底热液活动与生命起源[J]. 自然杂志. 2009, 31(4):207-212.
[ZHOU Huaiyang, LI Jiangtao, PENG Xiaotong.Seafloor hydrothermal system and the origin of life[J].Chinese Journal of Nature, 2009, 31(4):207-212.]
[60] Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J]. Oceanologica Acta, 1981, 4:59-69.
[61] Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of Biospheres, 1985, 15(4):327-345.
[62] Ueno Y, Yamada K, Yoshida N, et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J]. Nature, 2006, 440:516-519.
[63] Delacour A, Fruh-Green G L, Bernasconi S M, et al. Carbon geochemistry of serpentinites in the Lost City hydrothermal system (30°N, MAR)[J]. Geochimica Et Cosmochimica Acta, 2008, 72(15):3681-3702.
[64] Schouten S, Wakeham S G, Damste J. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea[J]. Organic Geochemistry, 2001, 32(10):1277-1281.
[65] Pancost R D, Sinninghe Damste J S, de Lint S, et al. Biomarker evidence for widespread anaerobic methane oxidation in mediterranean sediments by a consortium of methanogenic archaea and bacteria[J]. Applied and Environmental Microbiology, 2000, 66:1126-1132.
[66] Pancost R D, Sinninghe Damsté J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1-4):29-58.
[67] 姚鹏,于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展. 2010, 25(5):474-483.
[YAO PENG, YU Zhigang.Advances of intact polar membrane lipids as chemical biomarkers for extant microorganisms in marine sediments[J]. Advances in Earth Science, 2010, 25(5):474-483.]
[68] Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by highperformance liquid chromatography/electrospray ionization multistage mass spectrometry new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry, 2004, 18:617-628.
[69] Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMS Microbiology Letters, 2006, 258(2):297-304.
[70] Shank T M, Fornari D J, Von Damm K L, et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise)[J]. Deep Sea Research Part Ⅱ, 1998, 45(1-3):465-515.
[71] Weijers J, Bernhardt B, Peterse F, et al. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils[J]. Geochimica Et Cosmochimica Acta, 2011, 75(11):3179-3190.
[72] Edwards K J, Mccollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals:results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003, 67(15):2843-2856.
[73] Mccollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep-Sea Research I, 2000, 47:85-101.
[74] Miller S L. A Production of Amino Acids under Possible Primitive Earth Conditions[J]. Science, 1953, 117(3046):528-529.
[75] Foustoukos D I, Seyfried Jr W E. Hydrocarbons in Hydrothermal Vent Fluids:The Role of Chromium-Bearing Catalysts[J]. Science. 2004(304):1002-1005.
[76] Bach W, Paulick H, Garrido C J, et al. Unraveling the sequence of serpentinization reactions:petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15 degrees N (ODP Leg 209, Site 1274)[J]. Geophysical Research Letters, 2006, 33(L1330613):1-4.
[77] Konn C, Holm N G, Donval J P, et al. Organic compounds in hydrothermal fluids from ultramafic-hosted vents of the Mid Atlantic Ridge:An update on composition and origin[J]. Geochimica Et Cosmochimica Acta, 2009, 73(13):A679.
[78] Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic hydrocarbon production at Lost City hydrothermal field[J]. Science, 2008, 319(5863):604-607.
-
计量
- 文章访问数: 1211
- PDF下载数: 9
- 施引文献: 0