DIFFERENCE IN GRAIN-SIZE PARAMETERS OF TIDAL DEPOSITS DERIVED FORM THE GRAPHIC AND ITS POTENTIAL CAUSES
-
摘要: 采用Folk-Ward图解法(GM)、Friedman-Johnson矩值法(MMFr)和McManus矩值法(MMMc)公式,分别计算了杭州湾顶-钱塘江河口中高潮滩短柱状样395个砂、泥质纹层的粒度参数。比较分析发现,除平均粒径可以完全相互替代外,随着矩值法阶矩数的增加,彼此关系变得越复杂而无法直接相互替代。MMMc矩值法未采用传统统计学法计算偏态和峰度值,目前二者的物理意义尚不清楚,其适用范围有待进一步探讨;由于两种矩值法计算的粒度参数差别较大,鉴于目前MMFr矩值法应用更广泛且物理意义明确,建议统一使用MMFr公式以便于对比研究。砂、泥质(纹)层的粒度参数特征差异明显,沉积物组分分析(反演)进一步表明,二者由各自特征的粗、细组分构成,与各自形成时的水动力条件相符合。由此认为,取样时选相同或单一动力沉积单元进行粒度分析是重要的。运用正态分布函数二组分叠置法(正演)较好地模拟出矩值法与图解法偏态与峰度的复杂关系,其中主次组分的百分含量和众数差值是主要影响因素。随着细组分(次组分)含量的减少,矩值法偏态和峰度值都相应增加,细微地反映了粒度分布的整体变化趋势。但图解法偏态和峰度值发生先增加,到达某一拐点后再减小,这与其只采取有限的若干特征值进行统计和忽略尾部(φ16~φ84)部分的描述,可能是偏态拐点出现的位置在细组分百分含量为35%的原因。图解法与矩值法各具优势,但图解法对于次组分和尾部特征的表述具有不一致性,而矩值法在此方面具有趋同性,更适合于建立统一标准,开展粒度参数的物理意义解释。
-
关键词:
- 粒度参数 /
- 图解法 /
- 矩值法 /
- 正态分布函数组分分析(反演) /
- 粒度分布模拟(正演)
Abstract: Grain-size parameters of 395 samples from separately sandy or muddy layers of the intertidal-flat deposits in the Qiangtang Estuary were calculated using Fork-Ward graphic method (GM), and moment methods of Friedman-Johnson (MMFr) and McManus (MMMc), respectively. Comparative studies indicate that the parametric relationships are quite complex among the different methods especially for the higher order moments, only with an exception of mean size, in that GM mean size almost equates to that of MM. Physical meaning of MMMc skewness and kurtosis has never been well expressed due to its non-traditional statistical methodology, so unique application of MMFr formula is strongly recommended to calculate moment parameters for environmental interpretations and comparison. The parametric difference is notable between sandy and muddy layers, which are composed of separate coarser and finer dynamic populations in response to their different depositional processes on the basis of the numerical partitioning analyses (inverse modeling). It is therefore extrapolated that the sampling unit for grain size analyses should be strictly deposited under similar hydrodynamic conditions. A numerical modeling of the mixtures of two log-normal populations (forward modeling) was successfully applied to simulate the complex relationships of GM and MM parameters in terms of skewness and kurtosis, which are majorly controlled by the difference of percentiles and modes between the major and secondary populations. As the finer (secondary) population percentiles decrease, the value of MM skewness and kurtosis increases sensitively to the detail change in grain-size distribution pattern; while the value of graphic skewness and kurtosis increases before reaching their maxima and decreases after those critical points, mainly resulting from finite statistics of graphic method on a few eigenvalues and neglecting the tail (<5%) components.The critical value for graphic skewness to change from increasing into decreasing trend is 35% for the secondary population percentiles, hypothetically related with an additional expression in the grahic skewness formula to stress the percentiles (16 and 84) on the grain-size distribution, which are not included in the graphic kurtosis formula. The both methods have their own advantage and disadvantage, but the moment method has a priority in establishing a uniform standard in the future, typically for physical interpretation of grain-size parameters, considering that it can elaborately and consistently reflect changes in secondary population tail features in comparison with the failure of the graphic method. -
-
[1] Hartmann D, Flemming B. From particle size to sediment dynamics:an introduction[J]. Sedimentary Geology, 2007, 202:333-336.
[2] Folk R L, Ward W C. Brazos River bar:a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27:3-26.
[3] Friedman G M, Johnson K G. Exercises in Sedimentology[M]. New York:John Wiley Sons, 1982:68-83.
[4] McManus J. Grain size determination and interpretation[M]//. In:Tucker Med. Techniques in Sedimentology. Oxford:Wiley Blackwell, 1988:63-85.
[5] Blott S J, Pye K. GRADISTAT:A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26:1237-1248.
[6] 贾建军, 高抒, 薛允传. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼,2002, 33(6):577-582.
[JIA Jianjun, GAO Shu, XUE Yunchuan. Grain-size parameters derived from graphic and moment methods:A comparative study[J]. Oceanologia Et Limnologia Sinica, 2002, 33(6):577-582.]
[7] 徐兴永, 易亮, 于洪军, 等. 图解法和矩值法估计海岸带沉积物粒度参数的差异[J]. 海洋学报, 2010, 32(2):80-86.
[XU Xingyong, YI Liang, YU Hongjun, et al. The differences of grain-size parameters estimated with graphic and moment methods in coastal sediments[J]. Acta Oceanologic Sinica, 2010, 32(2):80-86.]
[8] 王德杰, 范代读, 李从先. 不同预处理对沉积物粒度分析结果的影响[J]. 同济大学学报, 2003, 31(3):314-318.
[WANG Dejie, FAN Daidu, LI Congxian. Influence of different pretreatments on size analysis and its implication[J]. Journal of Tongji University, 2003, 31(3):314-318.]
[9] 高抒. 沉积物粒径趋势分析:原理与应用条件[J]. 沉积学报, 2009, 27:826-836.[GAO Shu. Grain size trend analysis:principle and applicability[J]. Acta Sedimentologica Sinica, 2009
, 27:826-836.]
[10] Passega R. Grain size representation by CM patterns as a geological tool[J]. Journal of Sedimentary Petrology, 1964, 3:830-847.
[11] 范代读, 蔡国富, 尚帅, 等.钱塘江河口北边滩涌潮沉积作用与特征[J]. 科学通报, 2012, 57(13):1157-1167.
[FAN Daidu, CAI Guofu, SHANG Shui, et al. Sedimentation processes and sedimentary characteristics of tidal bores along the north bank of the Qiantang Estuary[J]. Chinese Science Bulletin, 2012, 57(13):1578-1589.]
[12] Shih S M, Komar P D. Sediments, beach morphology and sea cliff erosion within an Oregon coast littoral cell[J]. Journal of Coastal Research, 1994, 10:144-157.
[13] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentology, 2002, 152:263-277.
[14] Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162:39-62.
[15] Weltje G J, Prins A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202:409-24.
[16] Barusseau J P. Influence of mixtures of grain-size populations on the parametric and modal characteristics of coastal sands (Herault, Mediterranean Sea, France)[J]. Journal of Sedimentary Research, 2011, 81:611-629.
[17] Sengupta S. Size-sorting during suspension transportation-log-normality and other characteristics[J]. Sedimentology, 1975, 22:257-273.
[18] Sengupta S. Grain-size distribution of suspended load in relation to bed materials and flow velocity[J]. Sedimentology, 1979, 26:63-82.
[19] Middleton G V. Hydraulic interpretation of sand size distributions[J]. Journal of Geology, 1976, 84:405-426.
[20] Ashley G M. Interpretation of polymodal sediments[J]. The Journal of Geology, 1978, 86(4):411-421.
[21] Church M J. Grain-size and shape. In:Middleton GV, Church M, Coniglio M, et al, eds. Encyclopaedia of Sediments and Sedimentary Rocks[M]. Encyclopaedia of Earth Sciences:Berlin, Springer, 2003:928.
[22] Visher G S. Grain-size distributions and depositional processes[J]. Journal of Sedimentary Petrology, 1969, 39:1074-1106.
[23] Sheridan M F, Wohletz K H, Dehn J. Discrimination of grain-size subpopulations in pyroclastic deposits[J]. Geology, 1987, 15:367-370.
[24] Leys J, McTainsh G, Koen T, et al. Testing a statistical curve-fitting procedure for quantifying sediment populations within multi-modal particle-size distributions[J]. Earth Surface Processes and Landforms, 2005, 30:579-590.
[25] Christiansen C, Bartholdy J, Sørensen C. Composition and size distributions of local and advected sediment trapped over a tidal flat during moderate and storm conditions[J]. Danish Journal of Geography 2006, 106(1):1-11.
[26] 范代读, 郭艳霞, 李从先, 等. 杭州湾庵东浅滩潮坪层序粒度特征及应用[J]. 同济大学学报:自然科学版, 2005, 33:687-691.[FAN Daidu, GUO Yanxia, LI Congxian, et al. Grain-size distributions and their applications on Andong intertidal facies analyses in Hangzhou Bay[J]. Journal of Tongji University(Natural Science), 2005
, 33:687-691.]
[27] Davis M W, Ehrlich R. Relationship between measures of sediment-size-frequency distributions and the nature of sediments[J]. Geological Society of America Bulletin, 1970, 81:3537-3548.
[28] Swan D, Clague J J, Luternauer J L. Grain-size statisticsⅠ:Evaluation of the Folk and Ward graphic measures[J]. Journal of Sedimentary Petrology, 1978, 48(3):863-878.
[29] Swan D, Clague J J, Luternauer J L. Grain-size statistics Ⅱ:Evaluation of grouped moment measures[J]. Journal of Sedimentary Petrology, 1979, 49(2):487-500.
[30] Fredlund M D, Fredlund D G, Wilson G W. An equation to represent grain-size distribution[J]. Canadian Geotechnical Journal, 2000, 37:817-827.
[31] 国家海洋局908专项办公室. 海洋底质调查技术规程[S]. 北京:海洋出版社, 2006.[908 Project Office ed. Technical Manual for Submarine Surface Sediment Survey[S]. Beijing:China Ocean Press, 2006.]
-
计量
- 文章访问数: 1378
- PDF下载数: 3
- 施引文献: 0