图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析

蔡国富, 范代读, 尚帅, 吴伊婧, 邵磊. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质, 2014, 34(1): 195-204. doi: 10.3724/SP.J.1140.2014.01195
引用本文: 蔡国富, 范代读, 尚帅, 吴伊婧, 邵磊. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质, 2014, 34(1): 195-204. doi: 10.3724/SP.J.1140.2014.01195
CAI Guofu, FAN Daidu, SHANG Shuai, WU Yijing, SHAO Lei. DIFFERENCE IN GRAIN-SIZE PARAMETERS OF TIDAL DEPOSITS DERIVED FORM THE GRAPHIC AND ITS POTENTIAL CAUSES[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 195-204. doi: 10.3724/SP.J.1140.2014.01195
Citation: CAI Guofu, FAN Daidu, SHANG Shuai, WU Yijing, SHAO Lei. DIFFERENCE IN GRAIN-SIZE PARAMETERS OF TIDAL DEPOSITS DERIVED FORM THE GRAPHIC AND ITS POTENTIAL CAUSES[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 195-204. doi: 10.3724/SP.J.1140.2014.01195

图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析

  • 基金项目:

    国家自然科学基金项目(41076016);中国地质调查局海保工程专项(GZH201100203);中央高校基本科研业务费专项

详细信息
    作者简介: 蔡国富(1989-),男,硕士研究生,海洋地质专业,E-mail:guofu_cai@hotmail.com
  • 中图分类号: P736.2

DIFFERENCE IN GRAIN-SIZE PARAMETERS OF TIDAL DEPOSITS DERIVED FORM THE GRAPHIC AND ITS POTENTIAL CAUSES

  • 采用Folk-Ward图解法(GM)、Friedman-Johnson矩值法(MMFr)和McManus矩值法(MMMc)公式,分别计算了杭州湾顶-钱塘江河口中高潮滩短柱状样395个砂、泥质纹层的粒度参数。比较分析发现,除平均粒径可以完全相互替代外,随着矩值法阶矩数的增加,彼此关系变得越复杂而无法直接相互替代。MMMc矩值法未采用传统统计学法计算偏态和峰度值,目前二者的物理意义尚不清楚,其适用范围有待进一步探讨;由于两种矩值法计算的粒度参数差别较大,鉴于目前MMFr矩值法应用更广泛且物理意义明确,建议统一使用MMFr公式以便于对比研究。砂、泥质(纹)层的粒度参数特征差异明显,沉积物组分分析(反演)进一步表明,二者由各自特征的粗、细组分构成,与各自形成时的水动力条件相符合。由此认为,取样时选相同或单一动力沉积单元进行粒度分析是重要的。运用正态分布函数二组分叠置法(正演)较好地模拟出矩值法与图解法偏态与峰度的复杂关系,其中主次组分的百分含量和众数差值是主要影响因素。随着细组分(次组分)含量的减少,矩值法偏态和峰度值都相应增加,细微地反映了粒度分布的整体变化趋势。但图解法偏态和峰度值发生先增加,到达某一拐点后再减小,这与其只采取有限的若干特征值进行统计和忽略尾部(φ16~φ84)部分的描述,可能是偏态拐点出现的位置在细组分百分含量为35%的原因。图解法与矩值法各具优势,但图解法对于次组分和尾部特征的表述具有不一致性,而矩值法在此方面具有趋同性,更适合于建立统一标准,开展粒度参数的物理意义解释。
  • 加载中
  • [1]

    Hartmann D, Flemming B. From particle size to sediment dynamics:an introduction[J]. Sedimentary Geology, 2007, 202:333-336.

    [2]

    Folk R L, Ward W C. Brazos River bar:a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27:3-26.

    [3]

    Friedman G M, Johnson K G. Exercises in Sedimentology[M]. New York:John Wiley Sons, 1982:68-83.

    [4]

    McManus J. Grain size determination and interpretation[M]//. In:Tucker Med. Techniques in Sedimentology. Oxford:Wiley Blackwell, 1988:63-85.

    [5]

    Blott S J, Pye K. GRADISTAT:A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26:1237-1248.

    [6]

    贾建军, 高抒, 薛允传. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼,2002, 33(6):577-582.

    [JIA Jianjun, GAO Shu, XUE Yunchuan. Grain-size parameters derived from graphic and moment methods:A comparative study[J]. Oceanologia Et Limnologia Sinica, 2002, 33(6):577-582.]

    [7]

    徐兴永, 易亮, 于洪军, 等. 图解法和矩值法估计海岸带沉积物粒度参数的差异[J]. 海洋学报, 2010, 32(2):80-86.

    [XU Xingyong, YI Liang, YU Hongjun, et al. The differences of grain-size parameters estimated with graphic and moment methods in coastal sediments[J]. Acta Oceanologic Sinica, 2010, 32(2):80-86.]

    [8]

    王德杰, 范代读, 李从先. 不同预处理对沉积物粒度分析结果的影响[J]. 同济大学学报, 2003, 31(3):314-318.

    [WANG Dejie, FAN Daidu, LI Congxian. Influence of different pretreatments on size analysis and its implication[J]. Journal of Tongji University, 2003, 31(3):314-318.]

    [9]

    高抒. 沉积物粒径趋势分析:原理与应用条件[J]. 沉积学报, 2009, 27:826-836.[GAO Shu. Grain size trend analysis:principle and applicability[J]. Acta Sedimentologica Sinica, 2009

    , 27:826-836.]

    [10]

    Passega R. Grain size representation by CM patterns as a geological tool[J]. Journal of Sedimentary Petrology, 1964, 3:830-847.

    [11]

    范代读, 蔡国富, 尚帅, 等.钱塘江河口北边滩涌潮沉积作用与特征[J]. 科学通报, 2012, 57(13):1157-1167.

    [FAN Daidu, CAI Guofu, SHANG Shui, et al. Sedimentation processes and sedimentary characteristics of tidal bores along the north bank of the Qiantang Estuary[J]. Chinese Science Bulletin, 2012, 57(13):1578-1589.]

    [12]

    Shih S M, Komar P D. Sediments, beach morphology and sea cliff erosion within an Oregon coast littoral cell[J]. Journal of Coastal Research, 1994, 10:144-157.

    [13]

    Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentology, 2002, 152:263-277.

    [14]

    Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162:39-62.

    [15]

    Weltje G J, Prins A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202:409-24.

    [16]

    Barusseau J P. Influence of mixtures of grain-size populations on the parametric and modal characteristics of coastal sands (Herault, Mediterranean Sea, France)[J]. Journal of Sedimentary Research, 2011, 81:611-629.

    [17]

    Sengupta S. Size-sorting during suspension transportation-log-normality and other characteristics[J]. Sedimentology, 1975, 22:257-273.

    [18]

    Sengupta S. Grain-size distribution of suspended load in relation to bed materials and flow velocity[J]. Sedimentology, 1979, 26:63-82.

    [19]

    Middleton G V. Hydraulic interpretation of sand size distributions[J]. Journal of Geology, 1976, 84:405-426.

    [20]

    Ashley G M. Interpretation of polymodal sediments[J]. The Journal of Geology, 1978, 86(4):411-421.

    [21]

    Church M J. Grain-size and shape. In:Middleton GV, Church M, Coniglio M, et al, eds. Encyclopaedia of Sediments and Sedimentary Rocks[M]. Encyclopaedia of Earth Sciences:Berlin, Springer, 2003:928.

    [22]

    Visher G S. Grain-size distributions and depositional processes[J]. Journal of Sedimentary Petrology, 1969, 39:1074-1106.

    [23]

    Sheridan M F, Wohletz K H, Dehn J. Discrimination of grain-size subpopulations in pyroclastic deposits[J]. Geology, 1987, 15:367-370.

    [24]

    Leys J, McTainsh G, Koen T, et al. Testing a statistical curve-fitting procedure for quantifying sediment populations within multi-modal particle-size distributions[J]. Earth Surface Processes and Landforms, 2005, 30:579-590.

    [25]

    Christiansen C, Bartholdy J, Sørensen C. Composition and size distributions of local and advected sediment trapped over a tidal flat during moderate and storm conditions[J]. Danish Journal of Geography 2006, 106(1):1-11.

    [26]

    范代读, 郭艳霞, 李从先, 等. 杭州湾庵东浅滩潮坪层序粒度特征及应用[J]. 同济大学学报:自然科学版, 2005, 33:687-691.[FAN Daidu, GUO Yanxia, LI Congxian, et al. Grain-size distributions and their applications on Andong intertidal facies analyses in Hangzhou Bay[J]. Journal of Tongji University(Natural Science), 2005

    , 33:687-691.]

    [27]

    Davis M W, Ehrlich R. Relationship between measures of sediment-size-frequency distributions and the nature of sediments[J]. Geological Society of America Bulletin, 1970, 81:3537-3548.

    [28]

    Swan D, Clague J J, Luternauer J L. Grain-size statisticsⅠ:Evaluation of the Folk and Ward graphic measures[J]. Journal of Sedimentary Petrology, 1978, 48(3):863-878.

    [29]

    Swan D, Clague J J, Luternauer J L. Grain-size statistics Ⅱ:Evaluation of grouped moment measures[J]. Journal of Sedimentary Petrology, 1979, 49(2):487-500.

    [30]

    Fredlund M D, Fredlund D G, Wilson G W. An equation to represent grain-size distribution[J]. Canadian Geotechnical Journal, 2000, 37:817-827.

    [31]

    国家海洋局908专项办公室. 海洋底质调查技术规程[S]. 北京:海洋出版社, 2006.[908 Project Office ed. Technical Manual for Submarine Surface Sediment Survey[S]. Beijing:China Ocean Press, 2006.]

  • 加载中
计量
  • 文章访问数:  1378
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2012-11-19
修回日期:  2012-12-31

目录