海洋核杂岩形成机制及其热液硫化物成矿意义

李洪林, 李江海, 王洪浩, 张华添. 海洋核杂岩形成机制及其热液硫化物成矿意义[J]. 海洋地质与第四纪地质, 2014, 34(2): 53-59. doi: 10.3724/SP.J.1140.2014.02053
引用本文: 李洪林, 李江海, 王洪浩, 张华添. 海洋核杂岩形成机制及其热液硫化物成矿意义[J]. 海洋地质与第四纪地质, 2014, 34(2): 53-59. doi: 10.3724/SP.J.1140.2014.02053
LI Honglin, LI Jianghai, WANG Honghao, ZHANG Huatian. FORMATION MECHANISM OF OCEANIC CORE COMPLEX AND ITS SIGNIFICANCE TO THE MINERALIZATION OF HYDROTHERMAL SULFIDE[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 53-59. doi: 10.3724/SP.J.1140.2014.02053
Citation: LI Honglin, LI Jianghai, WANG Honghao, ZHANG Huatian. FORMATION MECHANISM OF OCEANIC CORE COMPLEX AND ITS SIGNIFICANCE TO THE MINERALIZATION OF HYDROTHERMAL SULFIDE[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 53-59. doi: 10.3724/SP.J.1140.2014.02053

海洋核杂岩形成机制及其热液硫化物成矿意义

  • 基金项目:

    印度洋脊多金属硫化物成矿潜力与资源环境评价(DY125-12-R-03);西南印度洋脊合同区多金属硫化物资源评价(DY125-11-R-01)

详细信息
    作者简介: 李洪林(1988-),男,博士生,研究方向为海洋构造地质,E-mail:lihonglin.1988@163.com
  • 中图分类号: P736.22

FORMATION MECHANISM OF OCEANIC CORE COMPLEX AND ITS SIGNIFICANCE TO THE MINERALIZATION OF HYDROTHERMAL SULFIDE

  • 海洋核杂岩是近年来新提出的洋底构造样式,其主要产出于慢速-超慢速扩张洋中脊轴两侧,目前在中大西洋脊、西南印度洋脊、中印度洋脊以及东南印度洋脊均发现海洋核杂岩。海洋核杂岩以其表面梳状构造为主要的探测特征,其构造要素还包括平行于洋脊轴的拆离断层、上盘后期正断层等;其岩石组合以出露于洋底的地幔岩石为主。海洋核杂岩的发育与慢速-超慢速洋脊的扩张速率、岩浆补给和拆离断层的发育有关:慢速-超慢速扩张洋脊的岩浆补给不足以平衡洋脊扩张所带来的空间应变量,从而以在薄弱带发育拆离断层来弥补,并继而使拆离断层下盘的地幔岩石出露洋底表面,形成海洋核杂岩。海洋核杂岩的发育经历了发育初期、发展期、成熟期和衰亡期等周期。海洋核杂岩为洋底热液硫化物矿床的发育提供了物质来源、热液通道等有利条件,或将是热液硫化物矿床发育的有利构造条件,是一种新的远离洋脊轴的热液系统。
  • 加载中
  • [1]

    Smith D K, Cann J R, Escartin J. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge[J]. Nature, 2006, 442:440-443.

    [2]

    Tucholke B E, Lin J, Kleinrock M C. Mega mullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge[J]. Journal of Geophysical Research, 1998, 103:9857-9866.

    [3]

    Ranero C R, Reston T J. Detachment faulting at ocean core complexes[J]. Geology, 1999, 27(11):983-986.

    [4]

    李三忠, 吕海青, 侯方辉, 等. 海洋核杂岩[J]. 海洋地质与第四纪地质, 2006, 26(1):47-52.

    [LI Sanzhong, LV Haiqing, HOU Fanghui et al. Ocean complex core[J]. Marine Geology and Quaternary Geology, 2006(26):47-52.]

    [5]

    Fujiwara T, Lin J, Matsumoto T, et al. Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty fracture zone in the last 5 Ma[J]. Geochemistry Geophysics Geosystems, 2003, 4(3):1024.

    [6]

    Ohara Y, Yoshida T, Kato Y, et al. Giant mega mullion in the Parece Vela back arc basin[J]. Marine Geophysical Research, 2001, 22(1):47-61.

    [7]

    Escartin J, Smith D K, Cann J, et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere[J]. Nature, 2008, 455(7214):790-794.

    [8]

    Blackman D K, Karner G D, Searle R C. Three-dimensional structure of oceanic core complexes:effects on gravity signature and ridge flank morphology, Mid-Atlantic Ridge, 30°N[J]. Geochemistry Geophysics Geosystems, 2008, 9(6):Q06007.

    [9]

    Blackman D K, Canales J P, Harding A. Geophysical signatures of oceanic core complexes[J]. Geophysical Journal International, 2009, 178(2):593-613.

    [10]

    Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 2006, 34(7):605-608.

    [11]

    Miranda J M, Silva P F, Lourenco N, et al. Study of the Saldanha Massif (MAR, 36° 34' N):Constrains from rock magnetic and geophysical data[J]. Marine Geophysical Research, 2002, 23(4):299-318.

    [12]

    Cannat M, Lagabrielle Y, Bougault H, et al. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge:Geological mapping in the 15°N region[J]. Tectonophysics, 1997, 279(1):193-213.

    [13]

    Reston T J, Weinrebe W, Grevemeyer I, et al. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S[J]. Earth and Planetary Science Letters, 2002, 200(3):255-269.

    [14]

    Dick H J B, Natland J H, Alt J C, et al. A long in situ section of the lower ocean crust:results of ODP Leg 176 drilling at the Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 2000, 179(1):31-51.

    [15]

    Searle R C, Cannat M, Fujioka K, et al. FUJI Dome:A large detachment fault near 64°E on the very slow-spreading southwest Indian Ridge[J]. Geochemistry Geophysics Geosystems, 2003, 4(8):9105.

    [16]

    Sauter D, Cannat M, Mendel V. Magnetization of 0~26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61°~67°E[J]. Geochemistry Geophysics Geosystems, 2008, 9(4):4-23.

    [17]

    Mitchell N, Escartin J, Allerton S. Detachment faults at mid-ocean ridges garner interest[J]. Eos, Transactions American Geophysical Union, 1998, 79(10):127-127.

    [18]

    Drolia R K, DeMets C. Deformation in the diffuse India-Capricorn-Somalia triple junction from a multi-beam and magnetic survey of the northern Central Indian Ridge, 3°~10°S[J]. Geochemistry Geophysics Geosystems, 2005, 6(10.1029).

    [19]

    Okino K, Matsuda K, Christie D M, et al. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance[J]. Geochemistry Geophysics Geosystems, 2004, 5(12):Q12012.

    [20]

    Ohara Y, Okino K, Kasahara J. Seismic study on oceanic core complexes in the Parece Vela back-arc basin[J]. Island Arc, 2007, 16(3):348-360.

    [21]

    Connelly D P, Copley J T, Murton B J, et al. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading center[J]. Nature Communications, 2012, 3:620.

    [22]

    MacLeod C J, Escartin J, Banerji D, et al. Direct geological evidence for oceanic detachment faulting:The Mid-Atlantic Ridge, 15°45' N[J]. Geology, 2002, 30(10):879-882.

    [23]

    Reston T J, Weinrebe W, Grevemeyer I, et al. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S[J]. Earth and Planetary Science Letters, 2002, 200(3):255-269.

    [24]

    Blackman D K, Ildefonse B, John B E, et al. the Expedition 304/305 Scientists[C]//Proceedings of the Integrated Ocean Drilling Program, 2006, 304:305.

    [25]

    Ildefonse B, Blackman D K, John B E et al. International Ocean Drilling Program Expeditions 304/305 Science Party[J]. Geology, 2007, 35(7):623-626.

    [26]

    Escartín J, Mével C, MacLeod C J, et al. Constraints on deformation conditions and the origin of oceanic detachments:The Mid-Atlantic Ridge core complex at 15°45' N[J]. Geochemistry Geophysics Geosystems, 2003, 4(8):1067.

    [27]

    Chen Y J. Dependence of crustal accretion and ridge-axis topography on spreading rate, mantle temperature, and hydrothermal cooling[J]. Special Papers-Geological Society of America, 2000:161-180.

    [28]

    Sinha M C, Constable S C, Peirce C, et al. Magmatic processes at slow spreading ridges:Implications of the RAMESSES experiment at 57°45' N on the Mid-Atlantic Ridge[J]. Geophysical Journal International, 2003, 135(3):731-745.

    [29]

    赵明辉,丘学林,李家彪,等. 慢速、超慢速扩张洋中脊三维地震结构研究进展与展望[J]. 热带海洋学报,2010(6):1-7.[ZHAO Minghui, QIU Xuelin, LI Jiabiao, et al. Research development and prospect on three-dimensional seismic structures of slow and ultraslow spreading ocean ridges[J]. Journal of Tropical Oceanography, 2010

    (6):1-7.]

    [30]

    Olive J A, Behn M D, Tucholke B E. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement[J]. Nature Geoscience, 2010, 3(7):491-495.

    [31]

    Behn M D, Ito G. Magmatic and tectonic extension at mid-ocean ridges:1. Controls on Fault Characteristics[J].Geochemistry,Geophysics,Geosystems,2008, 9(8):1965-1987.

    [32]

    Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14' N, MAR):the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology, 2002, 184(1):37-48.

  • 加载中
计量
  • 文章访问数:  1311
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2012-11-15
修回日期:  2013-02-08

目录