全球现代海底块状硫化物矿床资源量估计

张海桃, 杨耀民, 梁娟娟, 朱志伟, 李兵, 叶俊. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107-118. doi: 10.3724/SP.J.1140.2014.05107
引用本文: 张海桃, 杨耀民, 梁娟娟, 朱志伟, 李兵, 叶俊. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107-118. doi: 10.3724/SP.J.1140.2014.05107
ZHANG Haitao, YANG Yaomin, LIANG Juanjuan, ZHU Zhiwei, LI Bing, YE Jun. A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107-118. doi: 10.3724/SP.J.1140.2014.05107
Citation: ZHANG Haitao, YANG Yaomin, LIANG Juanjuan, ZHU Zhiwei, LI Bing, YE Jun. A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107-118. doi: 10.3724/SP.J.1140.2014.05107

全球现代海底块状硫化物矿床资源量估计

  • 基金项目:

    大西洋多金属硫化物成矿潜力与资源环境评价(DY125-12-R-01)

详细信息
    作者简介: 张海桃(1987-),男,硕士生,从事海底热液成矿作用与岩石学熔融包裹体研究,E-mail:373190137@qq.com
  • 中图分类号: P744

A GLOBAL ESTIMATE OF RESOURCE POTENTIAL FOR MODERN SEAFLOOR MASSIVE SULFIDE DEPOSITS

  • 随着世界发展对各种资源需求量的增大,海底资源究竟有多少也已成为全球各界探索的热点问题。现代海底块状硫化物(SMS)作为当今重要的潜在海底金属矿产资源,已在全球各个海域被广泛勘探和调查研究。在国际海底管理局建立的全球海底热液活动数据库基础上,利用美国地质调查所海底矿产评价"三部法",即:(1)将洋中脊、海底火山弧、弧后扩张中心圈定为全球SMS矿床远景区;(2)选定验证SMS矿床适用的矿床吨位、品位模型;(3)根据质通量、热通量、热液柱以及控制区数据估计全球热液喷口区数量与SMS矿床数量,对现代海底SMS矿床的资源量进行初步估计。结果显示:全球现代SMS矿床约为1 000个,所含资源量约为6×108 t,其中铜、锌、铅金属量为3×107 t,与陆地新生代以来的火山块状硫化物(VMS)矿床1.9×107 t相近。
  • 加载中
  • [1]

    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12):1155-1158.

    [2]

    Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources, 1993, 2(2):69-81.

    [3]

    Pirajno F. Hydrothermal processes and mineral systems[M]. Springer, 2009:581-713.

    [4]

    Baker E T, German C R. On the global distribution of hydrothermal vent fields[J]. Mid-Ocean Ridges, 2004:245-266.

    [5]

    Hannington M D, Petersen S, Herzig P M, et al. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides[J]. Geological Survey of Canada, 2004:4598.

    [6]

    Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):4125-4135.

    [7]

    deRonde C E J, Massoth G J, Baker E T, et al. Submarine hydrothermal venting related to volcanic arcs[C]//S Volcanic, Geothermal and Ore-Forming Fluids:Rulers and Witnesses of Processes within the Earth, 2002.

    [8]

    Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19707-19718.

    [9]

    Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497.

    [10]

    Perfit M R, Davidson J P. Plate tectonics and volcanism[C]//In Sigurdsson, H, Houghton B F, McNutt S R, Rymer H, Stix J, and Ballard R D, eds. Encyclopedia of volcanoes. San Diego,CA, Academic Press,2000:89-113.

    [11]

    Hannington M D, de Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[C]//Economic Geology 100th Anniversary Volume, Society ofEconomic Geologists, 2005:111-141.

    [12]

    Perfit M R, Ridley W I, Jonasson I R. Geologic, petrologic, and geochemical relationships between magmatism and massive sulfide mineralization along the eastern Galapagos spreading center[C]//Volcanic-associated massive sulfide deposits. 1999:75-100.

    [13]

    Embley R W, Chadwick W W, Perfit M R, et al. Recent eruptions on the coaxial segment of the Juan de Fuca Ridge:Implications for mid-ocean ridge accretion processes[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2000, 105(B7):16501-16525.

    [14]

    Delaney J R, Robigou V, McDuff R E, et al. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1992, 97(B13):19663-19682.

    [15]

    Kelley D S, Delaney J R, Yoerger D R. Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge[J]. Geology, 2001, 29(10):959-962.

    [16]

    Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):385-491.

    [17]

    Clift P D. Volcaniclastic sedimentation and volcanism during the rifting of western Pacific backarc basins[J]. Geophysical Monograph Series, 1995, 88:67-96.

    [18]

    Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1994, 99(B10):19707-19718.

    [19]

    Taylor B, Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497.

    [20]

    Hawkins J W. The geology of the Lau Basin[J]. Backarc Basins:Tectonics and Magmatism, 1995:63-138.

    [21]

    Fryer P. Geology of the Mariana Trough[J]. Backarc Basins:Tectonics and Magmatism, 1995:237-279.

    [22]

    Pearce J A, Ernewein M, Bloomer S H, et al. Geochemistry of Lau Basin volcanic rocks:influence of ridge segmentation and arc proximity[J]. Geological Society, London, Special Publications, 1994, 81(1):53-75.

    [23]

    Auzende J M, Urabe T. The STARMER French-Japanese joint project, 1987-1992[J]. Marine Geology, 1994, 116(1):1-3.

    [24]

    Auzende J M, Pelletier B, Eissen J P. The North Fiji Basin geology, structure, and geodynamic evolution[C]//Backarc basins:Tectonics and magamtism:New York, Plenum Press, 1995:139-175.

    [25]

    Schmidt R, Schmincke H U, Seamount and island building, in Sigurdsson[C]//Encyclopedia of Volcanoes. San Diego, Academic Press, 2000:383-402.

    [26]

    Tsunogai U, Ishibashi J, Wakita H,et al. Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin arc:Different from subaerial volcanism[J]. Earth and Planetary Science Letters,1994,126:289-301.

    [27]

    de Ronde C E J, Hannington M D, Stoffers P,et al. Evolution of a submarine magmatic-hydrothermal system:Brothers volcano, southern Kermadec arc, New Zealand[J]. Economic Geology, 2005:100.

    [28]

    Massoth G J, de Ronde C E J, Lupto J E, et al. Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc[M]. Geological Society of London Special Publication 2003, 219:119-139.

    [29]

    Embley R W, Baker E T, Chadwick W W, et al. Explorations of Mariana arc volcanoes reveal new hydrothermal systems[J]. EOS, 2004, 85:37-40.

    [30]

    Iizasa K, Fiske R S, Ishizuka O, et al. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera[J]. Science, 1999, 283:975-977.

    [31]

    Hannington M D, Jamieson J, Monecke T, et al. Modern seafloor massive sulfides and base metal resources:Towards an estimate of global seafloor massive sulfide potential[J]. Society of Economic Geologists Special Publication,2010, 15:317-338.

    [32]

    Interior U U S D, Mosier D L. Volcanogenic massive sulfide deposits of the world-database and grade and tonnage models[R]. open-file report 2009-1034. 2013.

    [33]

    Hannington M D, Jonasson I R, Herzig P M, et al. Physical and Chemical Processes of Seafloor Mineralization at Mid-Ocean Ridges[C]//Seafloor hydrothermal systems:Physical, chemical, biological, and geological interactions. 1995:115-157.

    [34]

    Hannington M D, Galley A G, Herzig P M, et al. Comparison of the tag mound and stockwork complex with cyprus-type massive sulfide deposits1[C]//Proceedings of the Ocean Drilling Program:Scientific Results. The Program, 1998, 158:389.

    [35]

    Nielsen S G, Rehkämper M, Teagle D A H, et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust[J]. Earth and Planetary Science Letters, 2006, 251(1):120-133.

    [36]

    Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes:Global distributions and geological inferences[J]. Geophysical Monograph Series, 1995, 91:47-71.

    [37]

    Baker E T, Chen Y J, Phipps Morgan J. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1):137-145.

    [38]

    German C R, Angel M V. Hydrothermal fluxes of metals to the oceans:a comparison with anthropogenic discharge[J]. Geological Society, London, Special Publications, 1995, 87(1):365-372.

    [39]

    Kadko D, Baross J, Alt J. The magnitude and global implications of hydrothermal flux[C]//Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. 1995:446-466.

    [40]

    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224.

    [41]

    Harris R N, Fisher A T, Chapman D S. Fluid flow through seamounts and implications for global mass fluxes[J]. Geology, 2004, 32(8):725-728.

    [42]

    Sinha M C, Evans R L. Geophysical constraints upon the thermal regime of the ocean crust[J]. Mid-Ocean Ridges, 2004:19-62.

    [43]

    Converse D R, Holland H D, Edmond J M. Flow rates in the axial hot springs of the East Pacific Rise (21 N):Implications for the heat budget and the formation of massive sulfide deposits[J]. Earth and Planetary Science Letters, 1984, 69(1):159-175.

    [44]

    Bemis K G, Von Herzen R P, Mottl M J. Geothermal heat flux from hydrothermal plumes on the Juan de Fuca Ridge[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1993, 98(B4):6351-6365.

    [45]

    Ginster U, Mottl M J, Von Herzen R P. Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1994, 99(B3):4937-4950.

    [46]

    Becker K, Von Herzen R, Kirklin J, et al. Conductive heat flow at the TAG active hydrothermal mound:Results from 1993-1995 submersible surveys[J]. Geophysical Research Letters, 1996, 23(23):3463-3466.

    [47]

    Kelley D S, Delaney J R, Yoerger D R. Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge[J]. Geology, 2001, 29(10):959-962.

    [48]

    Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):385-491.

    [49]

    Baker E T. Hydrothermal cooling of midocean ridge axes:Do measured and modeled heat fluxes agree?[J]. Earth and Planetary Science Letters, 2007, 263(1):140-150.

  • 加载中
计量
  • 文章访问数:  1315
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2013-08-15
修回日期:  2013-11-04

目录