RESEARCH ON GLOBAL PALEO-PLATE RECONSTUCTION AND LITHOFACIES PALAEOGEOGRAPHY IN TRIASSIC
-
摘要: 三叠纪全球古板块再造及岩相古地理的研究对分析该时期烃源岩全球分布特征及形成环境具有重要意义。利用古地磁软件恢复三叠纪全球古板块再造图,并在此基础上结合全球盆地分析和理论框架,叠加更新各种地质要素,最终编制完成三叠纪全球古地理图、全球岩相及烃源岩分布图。早三叠世发生泛大陆持续汇聚事件,导致在全球范围内火山频繁活动、冰川消融及弧后盆地的广泛发育;由于格陵兰和波罗的之间的多个热点,以及中大西洋大火山岩省的岩浆作用,导致中-晚三叠世泛大陆开始裂解,全球海平面上升,大陆周缘广泛发育陆表海,提供了利于生烃母质生物繁衍生息的环境,继而促进了烃源岩的形成。三叠纪的烃源岩仅占全显生宙时期的1.2%,干酪根类型分布较为均一。Abstract: Global Triassic paleo-plate tectonics and lithofacies palaeogeographic play a significant role in the study of global source rocks and depositional environment. With the paleomagnetic software and based on the data from global basin analysis, Triassic paleo-plate maps, including global palaeogeographic, global lithofacies and hydrocarbon source rock maps, have been compiled under the consideration of various geological factors. During the Early Triassic, the continued gathering of the Pangea led to frequent volcanic activities. Glaciers were melting and back-arc basins developing globally. In the middle-late Triassic, as the results of magmatism of hot spots between the Greenland and Blatic, and the activity of large igneous provinces in Central Atlantic, the Pangea was breaking up, global sea level getting high and epicontinental seas developed in continental margins, that provided an environment favorable to the reproduction of hydrocarbon generating biota, which in turn promoted the formation of hydrocarbon source rocks. The Triassic source rocks account for only 1.2% of the Phanerozoic source rocks and the kerogen types of the Triassic source rocks are relatively uniform.
-
Key words:
- plate tectonics /
- paleogeography /
- paleo-lithofacies /
- source rocks /
- Triassic
-
-
[1] Torsvik T H, Van der Voo R, Preeden U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012,114:325-368.
[2] Van der Voo R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1):1-9.
[3] 黄宝春,周烑秀,朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘, 2008,15(3):349-359.
[HUANG Baochun, ZHOU Yaoxiu, ZHU Rixiang. Discussions on phanerozoic evolution and formation of continental China, based on paleomagnetic studies[J].Earth Science Frontiers, 2008,15(3):349-359.]
[4] 方大钧,沈忠悦,王朋岩.塔里木地块古地磁数据表[J].浙江大学学报,2001,28(1):92-99.
[FANG Dajun, SHEN Zhongyue, WANG Pengyan. Paleomagnetic data of Tarim Block[J].Journal of Zhejiang University, 2001,28(1):92-99.]
[5] 方大钧,沈忠悦.塔里木地块各时代视磁极及板块漂移[J].浙江大学学报:理学版,2001,28(1):100-106.
[FANG Dajun, SHEN Zhongyue. Phanerozoic apparent polar-wander paths of Tarim and plate motion[J]. Journal of Zhejiang University, 2001, 28(1):100-106.]
[6] Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage:a revised model[J]. Journal of Asian Earth Sciences.2004,23:761-779.
[7] Abrajevitch A V, Vander Voo R, Bazhenov M. et al. Paleomagnetism of the mid-Devonian Kurgasholak Formation, Southern Kazakhstan:constraints on the Devonian paleogeography and oroclinal bending of the Kazakhstan volcanic arc[J]. Tectonophysics, 2007, 441:67-84.
[8] Golonka J. Chapter 6 Phanerozoic palaeoenvironment and palaeolithofacies maps of the Arctic region[C]//Arctic Petroleum Geology[J]. Geological Society of London, 2011,35:79-129.
[9] Zharkov M A, Chumakov N M. Paleogeography and Sedimentation Settings during Permian-Triassic[J]. Reorganizations in Biosphere, 2001, 9(4):29-54.
[10] Collin W J, Belousova E A, Kemp A S, et al. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data[J]. Nature Geoscience, 2011,4:333-337.
[11] Torsvik T H, Smethurst M A. Plate tectonic modelling:virtual reality with GMAP[J].Computers & Geosciences, 1999,25(4):395-402.
[12] Torsvik T H, Smethurst M A, Burke K. Long term stability in deep mantle structure:evidence from the 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP)[J].Earth and Planetary Science Letters, 2008,267:444-452.
[13] Torsvik T H, Steinberger B, Cocks L B M, et al. Longitude:Linking Earth's ancient surface to its deep interior[J]. Earth and Planetary Science Letters, 2008, 276:273-282.
[14] Torsvik T H, Van der Voo R, Preeden U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012,114:325-368.
[15] 吴汉宁,吕建军,朱日祥,等.扬子地块显生宙古地磁视极移曲线及地块运动特征[J].中国科学,1998,28:69-78.[WU Hannin, LV Jiajun, ZHU Rixiang, et al. Phanerozoic paleomagnetism polar-wander curve and motion features of Yangtze block[J]. Science in China, 1998
,28:69-78.]
[16] 翟永建, 周烑秀.华南和华北陆块显生宙的古地磁及构造演化[J].地球物理学报,1989,32(3):292-307.
[ZHAI Yongjian, ZHOU Yaoxiu. Paleomagnetism and tectonic evolution of North and South China Blocks since the Phanerozoic[J]. Chinese Journal of Geophysics. 1989,32(3):292-307.]
[17] 朱日祥, 杨振宇, 吴汉宁,等.中国主要地块显生宙古地磁视极移曲线与地块运动[J].中国科学,1998,28:1-16.[ZHU Rixiang, YANG Zhengyu, WU Hannin,et al. Phanerozoic paleomagnetism polar-wander curve and motion features of China main blocks[J]. Science in China, 1998
,28:1-16.]
[18] Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013,117:40-79.
[19] Golonka J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic[J]. Tectonophysics, 2004, 381(1):235-273.
[20] Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences,2013,66:1-33.
[21] Franzese J R, Spalletti L A. Late Triassic early Jurassic to continental extension in southwestern Gondwana:tectonic segmentation and pre-break-up rifting[J]. Journal of South American Earth Science, 2001, 14:257-270.
[22] 程日辉,王璞珺,刘万洙,等.下扬子区三叠纪最大海侵事件与扬子板块和华北板块碰撞的关系[J].海洋地质与第四纪地质,2004,24(2):55-59.
[CHENG Rihui, WANG Pujun, LIU Wanzhu, et al. The maximum flooding event of transgression during the Triassic and collision between Yangtze plate and north China plate in lower Yangtze area[J]. Marine Geology and Quaternary Geology, 2004,24(2):55-59.]
[23] 周统顺.中国三叠纪植物群、植物地理分区及古气候[C]//地层古生物论文集.1999,27:213-219.[ZHOU Tongshun. Triassic floras, photogeographic division and palaeoclimate in China[C]//Professional Papers of Stratigraphy and Palaeontology, 1999
,27:213-219.]
[24] 程日辉,白云风,李艳博.下扬子区三叠纪古地理演化[J].吉林大学学报,2004,34(3):367-370.
[CHENG Rihui, BAI Yunfeng, LI Yanbo. Evolution of paleogeography of Triassic of Lower Yangtze area[J].Journal of Jiling University, 2004,34(3):367-370.]
[25] 王正端,郑荣特,约记者,等. 罗平生物群:三叠纪海洋生物复苏重要见证[N]. 中国国土资源报, 2012-05-01.[WANG Zhengrui, ZHENG Rongte, YAO jizhi, et al. Luo Ping biota:Triassic Marine biological recovery important witness[N]. China's Land and Resources,2012-05
-01.]
[26] 黄思静,孙治雷,吴素娟,等. 三叠纪全球海水的锶同位素组成及主要控制因素[J].矿物岩石,2006,26(1):43-47.
[HUANG Sijing, SUN Zhilei, WU Sujuan, et al. Strontium isotope composition and control factors of global sea water in Triassic[J]. Journal of Mineralogy and Petrology, 2006,26(1):43-47.]
[27] Chen X, Boucot A J, Scotese C R, et al. Pangaean aggregation and disaggregation with evidence from global climate belts[J]. Journal of Palaeogeography, 2012, 1(1):5-13.
[28] Golonka J, Ford D. Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,161:1-34.
[29] Nikishin A M, Zieglerb P A, Stephenson R A, et al. Late Precambrian to Triassic history of the East European Craton:dynamics of sedimentary basin evolution[J]. Tectonophysics, 1996,268:23-63.
[30] Golonka J, Ross M I, Scotese C R. Phanerozoic paleogeographic and paleoclimatic modeling maps[J]. Arctic Petroleum Geology, 1994,8(3):1-47.
[31] Golonka J. Phanerozoic Paleoenvironment and Paleolithofacies maps Mesozoic[J]. Geologia, 2007, 33(2):211-264.
[32] Grauvogel-Stamm L, Ash S R. Recovery of the Triassic land flora from the end-Permian life crisis[J].Science Direct,2005(4):593-608.
[33] Huc A Y. Paleogeography, Paleoclimate, and source rocks[J].American Association of Petroleum Geologists Studies in Geology, 1995, 40:1-347.
[34] Trabucho-Alexandre J, Hay W W, de Boer P L. Phanerozoic environments of black shale deposition and the Wilson Cycle[J]. Solid Earth, 2012, 3:29-42.
[35] 陈世悦. 华北地块南部晚古生代至三叠纪沉积构造演化[J].中国矿业大学学报,2000,29(5):536-5405.
Sedimentary tectonic evolution from Late Palaeozoic to Triassic in the South of North China Block[J]. Journal of China University of Mining & Technology, 2000, 29(5):536-540.
[36] Kim H S, Ree J-H. Permo-Triassic changes in bulk crustal shortening direction during deformation and metamorphism of the Taebaeksan Basin, South Korea using foliation intersection/inflection axes:Implications for tectonic movement at the eastern margin of Eurasia during the Songrim (Indosinian) orogeny[J].Tectonophysics,2013,587:133-145.
[37] Negri A, Ferretti A, Wagner T, et al. Phanerozoic organic-carbon-rich marine sediments:Overview and future research challenges[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,273:218-227
[38] Spallettil L A, Artabe A E, More1 E M. Geological Factors and Evolution of Southwestern Gondwana Triassic Plants[J]. Gondwana Research, 2003,6(1):119-134.
[39] Scotese C R. PALEOMAP Project (7th edition)[M]. Department of Geology, University of Texas at Arlington, Rotterdam,1997.
[40] Klemme H D. Petroleum Systems of the World Involving Upper Jurassic Source Rocks[C]//In:Magoon L. B. & Dow, W. G. (eds). The Petroleum System-From Source To Trap. American Association of Petroleum Geologists Memoir, 1994, 60:51-72.
[41] 黄永建,Thierry A,邹艳荣,等.古海洋活性磷埋藏记录及其在氧气地球化学循环研究中的运用[J]. 地学前缘,2005(2):189-197.[HUANG Yongjian, Thierry A, ZOU Yanrong, et al. Burial records of reactive phosphorus in the paleocean and its application to the oxygen geochemical cycle[J]. Earth Science Frontiers, 2005
(2):189-197.]
[42] Trappe J. Pangea:extravagant sedimentary resource formation during supercontinent configuration, an overview[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000(161):35-48.
[43] 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005(3):39-48.[ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. Development constraints of marine source rocks in China.[J]Earth Science Frontiers, 2005
(3):39-48.]
[44] 秦建中,腾格尔,付小东.海相优质烃源层评价与形成条件研究[J].石油实验地质,2009(4):366-372,378.
[QIN Jianzhong, Tenger, FU Xiaodong. Study of forming condition on marine excellent source rocks and its evaluation[J]. Petroleum Geology & Experiment, 2009(4):366-372, 378.]
[45] 李天义,何生,杨智.海相优质烃源岩形成环境及其控制因素分析[J].地质科技情报,2008(6):63-70.[LI Tianyia, HE Sheng, YANG Zhia. The marine source rock formation conditions and control factors[J]. Geological Science and Technology Information, 2008
(6):63-70.]
[46] 刘占红,李思田,辛仁臣,等.地层记录中的古气候信息及其与烃源岩发育的相关性——以渤海黄河-凹陷古近系为例[J].地质通报,2007(7):830-833, 835
-840.[LIU Zhanhong, LI Sitian, XIN Renchen, et al. Paleoclimatic information in stratigraphic records and its relation to the formation of hydrocarbon source rocks-A case study of the Paleogene strata in the Huanghekou subbasin of the Bohai Bay basin, China[J]. Geological Bulletin of China, 2007(7):830-833, 835-840.]
[47] Klemme H D, Ulmishek G F. Effective petroleum source rocks of the world:Stratigraphic distribution and controlling depositional factors[J]. AAPG Bulletin,1991,75:1809-1851.
[48] 姚永坚,李学杰,杨楚鹏,等.北极阿拉斯加北坡盆地地质构造特征与油气资源潜力[J].海洋地质前沿,2011,27(12):18-24.
[YAO Yongjian, Li Xuejie, YANG Chupeng, et al. Tectonic characteristic and hydrocarbon resource potential in the North Slop basin of Alaska, the Arctic[J]. Marine Geology Frontiers, 2011,27(12):18-24.]
[49] 宋建国,李启明.古地理、古气候与烃源岩-1992年AAPG/IFP国际学术会议综述[J].石油学报,1993(1):51-54.[SONG Jianguo, LI Qiming. Paleogeography, paleoclimate and source rock-a summary of AAPG/IFP 1992
international conference[J]. Acta Petrolei Sinica, 1993(1):51-54.]
[50] 腾格尔,刘文汇,徐永昌,等.无机地球化学参数与有效烃源岩发育环境的相关研究[J].地球科学进展, 2005(2):93-200.[Tenger, LIU Wenhui, XU Yong-chang, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J].Advance in Earth Sciences, 2005
(2):93-200.]
[51] 韩雷.北乌斯丘尔特盆地构造及沉积演化规律研究[J].科学技术与工程,2011,11(28):6946-6951.
[HAN Lei. Tectonic and sedimentary evolution of North Ustyurt Basin[J]. Science Technology and Engineering, 2011,11(28):6946-6951.]
-
计量
- 文章访问数: 2005
- PDF下载数: 6
- 施引文献: 0