SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION
-
摘要: 板块重建是全球构造研究的核心和前沿,而且该研究自Wegener开始就以多学科集成综合为特征,随着21世纪进入大数据时代,其多学科交叉协同创新特色更为鲜明。但当前板块重建各派依然发挥各自特长,在板块重建领域,显示出其某方面的积累和特色,总体可分成14大派别:(1)最早利用计算机从事板块重建的Scotese群体;(2)仅依据古地磁极移为依据进行重建的Piper群体;(3)以Golonka为首的群体侧重岩相古地理、古环境相结合的板块重建;(4)重点对东南亚和西太平洋地区中生代-新生代进行板块重建的Robert Hall群体;(5)发展了板块和地质重建程序的Lawrence Lawver群体;(6)以古生物地理和古气候为特色的陈旭群体;(7)以海底磁条带和古水深重建为特色的Müller群体;(8)以古地貌、动力地形和沉积岩相重建为特色的Blakey群体;(9)以古地磁条带和蛇绿岩对比为特色的Stampfli群体;(10)以古地磁极移和地质综合对比为特色的LI Zhengxiang群体;(11)以与深部地球物理(层析成像)相结合为特色的Torsvik群体;(12)以碎屑锆石年龄谱对比为特色的Cawood群体;(13)以变质动力学和碰撞造山带事件对比为特色的Zhao Guochun群体;(14)打破刚性板块理念,开启可变形板块和动力地形重建的Michael Gurnis群体。各家在重建板块的时代上也有所侧重,从20世纪初Wegener提出2.5亿年左右的Pangea重建开始,到20世纪90年代初10亿年左右的Rodinia超大陆重建,再到20世纪90年代末Zhao Guochun和Rogers古元古代18亿年的Columbia超大陆重建。Abstract: Plate reconstruction, as a multidisciplinary scientific integration, has become the core and frontier of global tectonics research since A. Wegener. In the big data era as the 21st century, the multidisciplinary collaborative innovation is even more distinctive. However, any expert has his own specialized fields as well as limitation, group endeavor is required for plate reconstruction. There are fourteen schools of thought in general:(1) The Scotese group being an earlier group based on computer techniques; (2) The Piper group solely based on paleomagnetic polar wandering for plate reconstruction; (3) The group led by Golonka focusing on the combination of lithofacies palaeogeography and paleoenvironmental reconstruction; (4) The Robert Hall group on plate reconstruction specifically in the western Pacific and the southeast Asia; (5) The Lawrence Lawver group with special interest in developing plate reconstruction software; (6) The Chen Xu group featured by palaeobiogeography and paleoclimate; (7) The Mueller group based on magnetic lineations and the rebuilding of ancient ocean bythemetry; (8) The Barsley group focusing on the ancient topography, terrain and sedimentary facies; (9) The Stampfli group to reconstruct the ancient paleomagnetic lineations based on ophiolites; (10) The Li Zhengxiang group based on paleomagnetic polar wandering and integrated correlation of geological events; (11) The Torsvik group focusing on deep-seated geophysical (tomography) data in corporation with paleomagentics; (12) The Cawood group making plate reconstruction based on detrital zircon age spectrums; (13) The Zhao Guochun group devoting to degenerated dynamics and collision orogenic events; (14) The Michael Gurnis group who broke the concept of rigid plate for dynamic topography reconstruction and deformed plate reconstruction. Each group also has its interest and emphasis on specific era. For examples, Since A. Wegener at the beginning of the last century up to now, many groups have been interesting in the reconstruction of the Pangea supercontinent 250 Ma; since early 1990s, more work has been rendered to the plate reconstruction of the Rodinia supercontient 1.0 Ga; and since the end of 1990s, Zhao Guochun and Rogers have paid more attention to the reconstruction of the Columbia supercontinent in Paleoproterozoic 1.8 Ga.
-
Key words:
- plate /
- reconstruction /
- supercontinent /
- Columbia /
- Rodinia /
- Pangea
-
-
[1] Nance R D, Murphy J B, Santosh M. The supercontinent cycle:A retrospective essay[J]. Gondwana Research, 2014, 25:4-29.
[2] Rogers J J W, Santosh M. Supercontinents in Earth History[J]. Gondwana Research, 2003, 6(3):357-368.
[3] Zegers T E, de Wit M J, Dann J, et al. Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test[J]. Terra Nova, 1998, 10(5):250-259.
[4] Williams H, Hoffman P E, Lewry J F, et al. Anatomy of North America:thematic portrayals of the continent[J]. Tectonophyscis, 1991, 187:117-134.
[5] Condie K C. Earth as an evolving planetary system (second edition)[C]//Academic Press, the Netherlands, 2011.
[6] Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens:implications for a Pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59:125-162.
[7] Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5:5-22.
[8] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67:91-123.
[9] Pesonen L J, Salminen J, Donadini F, et al. Paleomagnetic configuration of continents during the Proterozoic[J]. Tectonophysics, 2003, 375:289-324.
[10] Franklin B S, Manoel D S, Pacca Igor I G, et al. Columbia revisited:Paleomagnetic results from the 1790 Ma colider volcanics (SW Amazonian Craton, Brazil)[J]. Precambrian Research, 2008, 164(1):40-49.
[11] Dewey J F, Burke K C. Tibetian, Variscan, and Precambrian basement reactivation:products of continental collision[J]. Journal of Geology, 1973, 81(6):683-692.
[12] Bogdanova S V, Pisarevsky S A, Li Z X. Assembly and breakup of Rodinia (some results of IGCP Project 440)[J]. Stratigraphy and Geological Correlation, 2009, 17(3):259-274.
[13] McMenamin M A S, McMenamin D L. The emergence of animals:the Cambrian break though[M]. Columbia University Press, 1990, ISBN 0-231-06647-3.
[14] Dalziel I W D. Overview:Neoproterozoic-Paleozoic geography and tectonics:review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 109(1):16-42.
[15] Goodge J W, Vervoort J D, Fanning C M, et al. A positive test of East Antarctica-Laurentia juxtaposition within the Rodinia supercontinent[J]. Science, 2008, 321(5886):235-240.
[16] Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia And Laurentia:No SWEAT, No AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128.
[17] Pisarevsky S A, Murphy J B, Cawood P A, et al. Late Neoproterozoic and Early Cambrian palaeogeography:models and problems[M]. Geological Society of London, Special Publications, 2008, 294:9-31.
[18] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.
[19] Sears J W, Price R A. New look at the Siberian connection:No SWEAT[J]. Geology, 2000, 28(5):423-426.
[20] Scotese C R. More information about the late Precambrian[R]. Paleomap Project. Retrieved, 2006.
[21] Weil A B, Van der Voo R, Mac Niocaill C, et al. The Proterozoic supercontinent Rodinia:paleomagnetically derived reconstructions for 1100 to 800 Ma[J]. Earth and Planetary Science Letters, 1998,154:13-24.
[22] Piper J D A. Paleopangea in Meso-Neoproterozoic times:The paleomagnetic evidence and implications to continental integrity, supercontinent from and Eocambrian break-up[J]. Journal of Geodynamics, 2010, 50:191-223.
[23] Torsvik T H, Gaina C, Redfield T F. Antarctica and global paleogeography:From Rodinia, Through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways[C]//In:Cooper A K, Barrett P J, Stagg H, et al. Antarctica:A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington D C, The National Academies Press, 2008:125-140.
[24] Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013, 589:44-56.
[25] Donnadieu Y, Oddéris Y, Ramstein G, et al. A "snowball Earth" climate triggered by continental break-up through changes in runoff[J]. Nature, 2004, 428(6980):303-306.
[26] Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics:Review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 109(1):16-42.
[27] Stern R J. Arc assembly and continental collision in the Neoproterozoic East Africa Orogen:implications for the consolidation of Gondwanaland[J]. Annual Reviews of Earth and Planetary Sciences, 1994, 33:319-351.
[28] Evans D A D. Reconstructing pre-Pangean supercontinents. GSA Bulletin[J]. 125(11/12):1735-1751.
[29] Condie K C. Plate Tectonics and Crustal Evolution[M]. Pergamon Press, 1989.
[30] Arlo B, Weil R, Van der Voo B A, et al. Oroclinal bending and evidence against the Pangea megashear:The Cantabria-Asturias arc (northern Spain)[J]. Geology, 2001, 29(11):991-994.
[31] Benton M J. Vertebrate Palaeontology[M]. Third edition, Oxford, 2005:25.
[32] Barbara W, Murck Brian J Skinner. Geology Today:Understanding Our Planet, Study Guide[M]. Wiley, 1999. ISBN 978-0-471-32323-5.
[33] Kearey P, Klepeis K A, Vine F J. Global Tectonics[M]. Third edition, Chichester:Wiley, 2009:66-67. ISBN 978-1-4051-0777-8.
[34] Merali Z, Skinner B J. Visualizing Earth Science[M]. Wiley, 2008. ISBN 978-0-470-41847-5.
[35] Williams C, Nield T. Pangaea, the comeback[J]. New Scientist, 2007:36-40.
[36] Bowdler N. America and Eurasia "to meet at north pole"[N]. BBC News, 2012-02-08.
[37] Smith K. Supercontinent Amasia to take North Pole Position[N]. Nature News, 2012-02-08.
[38] Nance R D, Worsley T R, Moody J B. The supercontinent cycle[J]. Scientific American, 1988, 259(1):72-79.
[39] Scotese C R, Baker C W. Continental drift reconstructions and animation[J]. J. Geol. Educ., 1975, 23:167-171.
[40] Ziegler P A, Cloetingh S, Guiraud R, et al. Peri-Tethyan Platforms:constraints on dynamics of rifting and basin inversion[J]. Mémoire du Museum National d'Histoire Naturelle, 2001a,186:9-49.
[41] Ziegler P A, Stampfli G M. Late Paleozoic Early Mesozoic plate boundary reorganisation:collapse of the Variscan orogen and opening of Neotethys[J]. Annali Museo Civico Scienze Naturali, 2001b, Brescia 25:17-34.
[42] Golonka J, Ross M I, Scotese C R. Phanerozoic paleogeographic and paleoclimatic modeling maps[C]//In:Embry A F, Beauchamp B, Glass D J (eds). PANGEA:Global Environments and Resources. Can. Soc. Petrol. Geol., 1994, Memoir 17:1-48.
[43] Scotese C R. A continental drift "flip book"[J]. Computers and Geology, 1976, 2:113-116.
[44] Scotese C R. Late Proterozoic plate tectonics and palaeogeography:a tale of two supercontinents, Rodinia and Pannotia[M]. London, Geological Society, Special Publications, 2009, 326:67-83.
[45] Scotese C R, Sager W W. Mesozoic and Cenozoic Plate Tectonic Reconstructions[J]. Tectonophysics, 1988, 155:27-48.
[46] Gahagan L M, Scotese C R, Royer J Y, et al. Tectonic fabric of the ocean basins from satellite altimetry data[C]//In:Scotese C R, Sager W W (eds). Mesozoic and Cenozoic plate reconstructions. Tectonophysics, 1988, 155:1-26.
[47] Jurdy D M, Stefanick M, Scotese C R. Paleozoic plate dynamics[J]. J. Geophys. Res., 1995,100:17965-17975.
[48] Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013a, 589:44-56.
[49] Piper J D A. Consolidation of continental crust in late Archaean-early Proterozoic times:A palaeomagnetic test[J]. Gondwana Research, 2003, 6(3):435-448.
[50] Piper J D A. The Neoproterozoic Supercontinent:Rodinia or Palaeopangaea?[J]. Earth Planet Sci. Lett., 2000, 176:131-146.
[51] Piper J D A. The Neoproterozoic supercontinent Palaeopangaea[J]. Gondwana Research, 2007a, 12:202-227.
[52] Piper J D A. Protopangaea:Palaeomagnetic definition of Earth's oldest (mid-Archaean-Palaeoproterozoic) supercontinent[J]. Journal of Geodynamics, 2010a, 50:154-165.
[53] Piper J D A. Palaeopangaea in Meso-Neoproterozoic times:The palaeomagnetic evidence and implications to continental integrity, supercontinent form and Eocambrian break-up[J]. Journal of Geodynamics, 2010b, 50:191-123.
[54] Piper J D A, Zhang J S, Huang B C, et al. Palaeomagnetism of Precambrian dyke swarms in the North China Shield:The~1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times[J]. Journal of Asian Earth Sciences, 2011a, 41:504-524.
[55] Piper J D A. SWEAT and the end of SWEAT:The Laurentia-Siberia configuration during Meso-Neoproterozoic times[J]. International Geology Review, 2011b, 53(12):1265-1279.
[56] Piper J D A. Palaeomagnetism of the Loch Doon Granite Complex, Southern Uplands of Scotland:The Late Caledonian palaeomagnetic record and an Early Devonian episode of True Polar Wander[J]. Tectonophysics, 2007b, 432:133-157.
[57] Piper J D A. A~90(Late Silurian-Early Devonian apparent polar wander loop:The latest inertial interchange of planet earth?[J]. Earth and Planetary Science Letters, 2006, 250:345-357.
[58] Huang B C, Piper J D A, Zhang C, et al. Palaeomagnetism of Cretaceous rocks in the Jiaodong Peninsula, eastern China:Insights into block rotations and Neotectonic deformation in eastern Asia[J]. Journal of Geophysical Research, 2007, 112(B03106):1-21.
[59] Hall R. Tectonic Evolution of SE Asia[C]//Hall R, Blundell D J (eds.).Geological Society of London Special Publication, 1996, 106:153-184.
[60] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20:353-434.
[61] Hall R. Australia-SE Asia collision:plate tectonics and crustal flow[C]//In:Hall R, Cottam M A, Wilson M E J (eds.). The SE Asian gateway:history and tectonics of Australia-Asia collision. Geological Society of London Special Publication, 2011:75-109.
[62] Hall R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41.
[63] Hall R, Ali J R, Anderson C D. Cenozoic motion of the Philippine Sea Plate:palaeomagnetic evidence from eastern Indonesia[J]. Tectonics, 1995a, 14(5):1117-1132.
[64] Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995b, 251(1-4):229-250.
[65] Hall R, Morley C K. Continent-Ocean Interactions within the East Asian Marginal Seas[C]//Clift P, Wang P, Kuhnt W H (eds.). Washington D C:American Geophysical Union, Geophysical Monograph, 2004, 149:55-85.
[66] Van Hattum M W A, Hall R, Pickard A L, et al. Southeast Asian sediments not from Asia:Provenance and geochronology of north Borneo sandstones[J]. Geology, 2006, 34(7):589-592.
[67] Renema W, Bellwood D R, Braga J C, et al. Hopping hotspots:Global shifts in marine biodiversity[J]. Science, 2008, 321(5889):654-657.
[68] Dalziel I W D, Dalla Salda L H, Gahagan L M. Paleozoic Laurentia-Gondwana interaction and the origin of the Appalachian Andean mountain system[J]. Geological Society of American Bulletin, 1994, 106:243-252.
[69] Dalziel I W D, Dalla Salda L H, Torsvik T H, et al. Ordovician palaeogeography of Siberia and adjacent continents[J]. Journal of the Geological Society, 1996, 153(Part 2):329-330.
[70] Dalziel I W D, Lawver L A, Murphy J B. Plumes, orogenesis, and supercontinental fragmentation[J]. Earth and Planetary Science Letters, 2000a, 178(1-2):1-11.
[71] Dalziel I W D, Mosher S, Gahagan L M. Laurentia-Kalahari collision and the assembly of Rodinia[J]. Journal of Geology, 2000b,108:499-513.
[72] Dalziel I W D, Lawver L A, Norton I O, et al. The Scotia Arc:Genesis, evolution, global significance[J]. Annual Review of Earth and Planetary Sciences, 2013, 41:767-793.
[73] Dalziel I W D. Antarctica:A tale of two supercontinents?[J]. Annual Review of Earth and Planetary Sciences, 1992, 20:501-526.
[74] Dalziel I W D. Precambrian Scotland as a Laurentia-Gondwana Link-Origin and Significance of Cratonic Promontories[J]. Geology, 1994, 22:589-592.
[75] Dalziel I W D. A global perspective on the Scottish Caledonides[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2000, 91:405-420.
[76] Dalziel I D, Soper N J. Neoproterozoic extension on the Scottish promontory of Laurentia:Paleogeograhic and tectonic implications[J]. Journal of Geology, 2001, 109:299-317.
[77] Dalziel I W D, Astini R A. Early Paleozoic paleogeography of Laurentia and western Gondwana:Evidence from tectonic subsidence analysis:Comment[J]. Geology, 1998, 26(6):575-576.
[78] Scheibner E, Moore G W, Drummond K J, et al. Tectonic map of the circum-Pacific region, Pacific basin sheet, U.S. Geological Survey Circum-Pacific Map CP-52[C]. 2013, pamphlet 134 p., 2 sheets, scale 1:17,000,000, and GIS data.
[79] Coffin M F, Eldholm O. Scratching the surface:Estimating dimensions of large igneous provinces[J]. Geology, 1993, 21:515-518.
[80] Coffin M F, Eldholm O. Large Igneous Provinces:crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1):1-36.
[81] Coffin M F, Eldholm O. Large igneous provinces[C]//In Steele J H, Thorpe S A, Turekian K K (eds.). Encyclopedia of Ocean Sciences. London, Academic Press, 2001:1290-1298.
[82] Coffin M F, Pringle M S, Duncan R A, et al. Kerguelen hotspot magma output since 130 Ma[J]. Journal of Petrology, 2002, 43(7):1121-1139.
[83] Lawver L A, Grantz A, Gahagan L M. Plate kinematic evolution of the present Arctic region since the Ordovician[C]//In:Miller E L, Grantz A, Klemperer S L (eds.). Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses. Geological Society of America, Special Paper, Boulder, CO, 2002:333-358.
[84] Wallace P J, Frey F A, Weis D, et al. Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago:Editorial[J]. Journal of Petrology, 2002, 43(7):1105-1108.
[85] Storey M, Mahoney J J, Saunders A D, et al. Timing of hot spot-related volcanism and the breakup of Madagascar and India[J]. Science, 1995, 267:852-855.
[86] Cunningham W D, Dalziel I W D, Lee T Y, et al. Southernmost South America-Antarctic Peninsula relative plate motions since Gondwana break-up:Implications for the tectonic evolution of the Scotia Arc region[J]. Journal of Geophysical Research, 1995, 100:8257-8266.
[87] Lawver L A, Müller R D. Iceland hotspot track[J]. Geology, 1994, 22:311-314.
[88] Lee T Y, Lawver L A. Cenozoic plate reconstruction of the South China Sea region[J]. Tectonophysics, 1994, 235:149-180.
[89] Schuur C L, Coffin M F, Frohlich C, et al. Sedimentary regimes at the Macquarie Ridge Complex:Interaction of Southern Ocean circulation and plate boundary bathymetry[J]. Paleoceanography, 1998, 13(6):646-670.
[90] Lawver L A, Gahagan L M. Opening of Drake Passage and its impact on Cenozoic ocean circulation[C]//In:Crowley T J, Burke K C (eds.). Tectonic Boundary Conditions for Climate Reconstructions. Oxford Monographs on Geology and Geophysics, Oxford Univ. Press, 1998, 39:212-223.
[91] Herold N, Huber M, Greenwood D R, et al. Early to middle Miocene monsoon climate in Australia[J]. Geology, 2010, 39:3-6.
[92] Herold N, You Y, Müller R D, et al. Climate model sensitivity to changes in Miocene paleotopography[J]. Australian Journal of Earth Sciences, 2010, 57:377-379.
[93] Becker T W, Conrad C P, Buffett B, et al. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport[J]. EPSL, 2009, 278:233-242.
[94] Gaina C, Müller R D, Brown B, et al. Breakup and early seafloor spreading between India and Antarctica[J]. Geophysical Journal International, 2007, 170:151-169.
[95] Coltice N, Phillips B R, Bertrand H, et al. Global warming of the mantle at the origin of flood basalts over supercontinents[J]. Geology, 2007, 35:391-394.
[96] Müller R D, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks[J]. Geology, 1993, 21:275-278.
[97] Müller R D, Roest W R, Royer J Y, et al. Digital isochrons of the world's ocean floor[J]. Journal of Geophysical Research-Solid Earth, 1997, 102(B2):3211-3214.
[98] Müller R D, Dutkiewicz A, Seton M, et al. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal[J]. Geology, 2013, 41(8):907-910.
[99] Müller R D. Geophysics:Sedimentary basins feeling the heat from below[J]. Science, 2010a, 329:769-770.
[100] Müller R D. Tectonics:Sinking Continents[J]. Nature Geoscience, 2010b, 3:79-80.
[101] Müller R D. Plate motion and mantle plumes[J]. Nature, 2011, 475:40-41.
[102] Shephard G E, Müller R D, Liu L, et al. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction[J]. Nature Geoscience, 2010, 3:870-875.
[103] Shephard G E, Müller R D, Seton M. The tectonic evolution of the Arctic since Pangea breakup:Integrating constraints from surface geology and geophysics with mantle structure[J]. Earth-Science Reviews, 2013, 124:148-183.
[104] Morra G, Seton M, Quevedo L, et al. Organisation of the tectonic plates in the last 200 Myr[J]. Earth and Planetary Science Letters, 2013, 373:93-101.
[105] Whittaker J M, Müller R D, Gurnis, M. Development of the Australian-Antarctic depth anomaly[J]. Geochemistry Geophysics Geosystems, 2010, 11(Q11006):23.
[106] Whittaker J M, Goncharov A, Williams S E, et al. Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean[J]. Geochem. Geophy. Geosyst., 2013a, 14(8):3297-3305.
[107] Whittaker J M, Williams S E, Müller R D. Revised tectonic evolution of the Eastern Indian Ocean[J]. Geochem. Geophy. Geosyst., 2013b, 14(6):1891-1909.
[108] Gibbons A D, Barckhausen U, Bogaard P, et al. Constraining the Jurassic extent of Greater India:tectonic evolution of the West Australian margin[J]. Geochem. Geophy. Geosyst., 2012, 13(5):25.
[109] Gibbons A D, Whittaker J M, Müller R D. The breakup of East Gondwana:assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model[J]. Journal of Geophysical Research, 2013, 118:1-15.
[110] Wright N, Zahirovic S, Müller R D, et al. Towards adaptable, interactive and quantitative paleogeographic maps[J]. Biogeosciences, 2013, 10:1529-1541.
[111] Flament N, Coltice N, Rey P. A case for late-Archaean continental emergence from thermal evolution models and hypsometry[J]. Earth and Planetary Science Letters, 2008, 275:326-336.
[112] Flament N, Rey P F, Coltice N, et al. Lower crustal flow kept Archean continental flood basalts at sea level[J]. Geology, 2011, 39:1159-1162.
[113] Flament N, Gurnis M, Müller R D. A review of observations and models of dynamic topography[J]. Lithosphere, 2013, 5:189-210.
[114] Masterton S, Gubbins D, Müller R D, et al. Forward modelling of oceanic lithospheric magnetization[J]. Geophysical Journal International, 2012, 25.
[115] Matthews K J, Müller R D, Wessel P, et al. The tectonic fabric of the ocean basins[J]. Journal of Geophysical Research, 2011a, 116(B12):28.
[116] Matthews K J, Hale A J, Gurnis M, et al. Dynamic subsidence of Eastern Australia during the Cretaceous[J]. Gondwana Research, 2011b, 19:372-383.
[117] Matthews K J, Seton M, Müller R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth Planet. Sci. Lett., 2012, 355-356:283-298.
[118] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4):212-270.
[119] Herold N, Huber M, Müller R D. Modelling the Miocene climatic optimum, Part 1:land and atmosphere[J]. Journal of Climate, 2011, 24:6353-6372.
[120] Whittaker J M, Müller R D, Leitchenkov G, et al. Response to Comment on:Major Australian-Antarctica Plate Reorganization at Hawaiian-Emperor Bend Time[J]. Science, 2008b, 321(5888):490.
[121] Chandler M T, Wessel P, Taylor B, et al. Reconstructing Ontong Java Nui:Implications for Pacific absolute plate motion, hotspot drift and true polar wander[J]. EPSL, 2012, (331-332):140-151.
[122] Bower J B, Gurnis M, Seton M. Lower mantle structure from paleogeographically constrained dynamic Earth models[J]. Geochem. Geophys. Geosyst., 2013,14:44-63.
[123] Torsvik T H, Müller R D, Van der Voo R, et al. Global plate motion frames:Toward a unified model[J]. Reviews of Geophysics, 2008, 46(3):RG3004.
[124] Rey P F, Müller R D. Fragmentation of Active Continental Plate Margins Owing to the Buoyancy of the Mantle Wedge[J]. Nature Geoscience, 2010, 3:257-261.
[125] Heine C, Müller R D, Steinberger B, et al. Anomalous subsidence in intracontinental basins[J]. Physics of the Earth and Planetary Interiors, 2008, 171:252-264.
[126] Heine C, Müller R D, Steinberger B, et al. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia[J]. Tectonophysics, 2010, 483:135-150.
[127] Liu L, Gurnis M, Seton M, et al. The role of oceanic plateau subduction in the Laramide orogeny[J]. Nature Geoscience, 2010, 3:353-357.
[128] Capitanio F A, Morra G, Goes S, et al. India-Asia convergence driven by the subduction of the Greater Indian continent[J]. Nature, 2010, 3:136-139.
[129] Dyksterhuis S, Müller R D. Cause and evolution of intraplate orogeny in Australia[J]. Geology, 2008, 36:495-498.
[130] Xie X, Müller R D, Ren J, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247:129-144.
[131] Xie X, Müller R D, Li S, et al. Origin of anomalous subsidence along the northern South China Sea Margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23:745-765.
[132] Whittaker J M, Müller R D, Sdrolias M, et al. Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous[J]. Earth and Planetary Science Letters, 2007b, 255:445-457.
[133] Sdrolias S, Müller R D. Controls on Back-arc Basin Formation[J]. Geochemistry Geophysics Geosystems, 2006,7(4):Q04016.
[134] Whittaker J M, Müller R D, Leitchenkov G, et al. Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time[J]. Science, 2007a, 318(5847):83-86.
[135] Whittaker J M, Müller R D, Roest W R, et al. How supercontinents and superoceans affect seafloor roughness[J]. Nature, 2008a, 456:938-941.
[136] Butterworth N P, Quevedo L, Morra G, et al. Influence of overriding plate geometry and rheology on subduction[J]. Geochemistry Geophysics Geosystems, 2012, 13(6):Q06W15.
[137] Gurnis M, Turner M, Zahirovic S, et al. Plate Reconstructions with Continuously Closing Plates[J]. Computers and Geosciences, 2012, 38:35-42.
[138] Müller R D, Dyksterhuis S, Rey P. Australian palaeo-stress fields and tectonic reactivation over the past 100 Myr[J]. Australian Journal of Earth Sciences, 2012, 59:13-28.
[139] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry Geophysics Geosystems, 2008a, 9:18-36.
[140] Müller R D, Sdrolias M, Gaina C, et al. Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics[J]. Science, 2008b, 319(5868):1357-1362.
[141] Qin X, Müller R D, Cannon J, et al. The GPlates Geological Information Model and Markup Language Geosci[J]. Instrum. Method. Data Syst., 2012, 1:111-134.
[142] Hoernle K, Hauff F, Werner R, et al. Shallow recycling of continental lithosphere:Generation of a large near-ridge seamount province[J]. Nature Geoscience, 2011, 4:883-887.
[143] Shephard G E, Liu L, Müller R D, et al. Dynamic topography and anomalously negative residual depth of the Argentine Basin[J]. Gondwana Research Letters, 2012a, 22(2):658-663.
[144] Shephard G E, Bunge H P, Schuberth B S A, et al. Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure[J]. Earth and Planetary Science Letters, 2012b, 317-318:204-217.
[145] Blakey R C. Paleogeographic and tectonic controls on some Lower and Middle Jurassic erg deposits, Colorado Plateau[C]//In:Caputo M V, Peterson J A, Franczyk K J (eds.). Mesozoic systems of the Rocky Mountain region, USA:Rocky Mountain Section. Society of Economic Paleontologists and Mineralogists, Special Publication, 1994:273-298.
[146] Blakey R C, Peterson F, Kocurek G. Late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States[J]. Sedimentary Geology, 1988, 56:3-125.
[147] Blakey R C, Basham E L, Cook M J. Early and Middle Triassic paleogeography, Colorado Plateau and vicinity[C]//In:Morales M (ed.). Aspects of Mesozoic Geology and Paleontology of the Colorado Plateau. Museum of Northern Arizona Bulletin, 1993, 59:13-26.
[148] Blakey R C, Havholm K G, Jones L S. Stratigraphic analysis of eolian interactions with marine and fluvial deposits, Middle Jurassic Page Sandstone and Carmel Formation, Colorado Plateau, USA.[J]. Journal of Sedimentary Research, 1996, 66:324-342.
[149] Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth and Planetary Science Letters, 2002, 196:17-33.
[150] Stampfli G M, Kozur H W. Europe from the Variscan to the Alpine cycles[J]. Geological Society of London, Memoirs, 2006, 32(1):57-82.
[151] Von Raumer J F, Stampfli G M, Borel G D, et al. Organization of pre-Variscan basement areas at the north-Gondwanan margin[J]. International Journal of Earth Sciences, 2002, 91:35-52.
[152] Stampfli G M. Tethyan oceans[J]. Geological Society of London, Special Publications, 2000, 173:1-23.
[153] Wilhem C, Windley B, Stampfli G M. The Altaids of Central Asia:A tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113:303-341.
[154] Vérard C, Flores K E, Stampfli G M. Geodynamic reconstructions of the South America-Antarctica plate system[J]. Journal of Geodynamics, 2012, 53:43-60.
[155] Meinhold G, Arslan A, Lehnert O, et al. Global mass wasting during the Middle Ordovician:Meteoritic trigger or plate-tectonic environment?[J]. Gondwana Research, 2011, 19:535-541.
[156] Stampfli G M, Hochard C. Plate tectonics of the Alpine realm[J]. Geological Society of London, Special Publications, 2009, 327:89-111.
[157] Ferrari O M, Hochard C, Stampfli G M. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (northern Thailand-Myanmar)[J]. Tectonophysics, 2008, 451:346-365.
[158] Von Raumer J F, Stampfli G M, Bussy F. Gondwana-derived microcontinents-The constituents of the Variscan and Alpine collisional orogens[J]. Tectonophysics, 2003, 365:7-22.
[159] Von Raumer J F, Stampfli G M. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios[J]. Tectonophysics, 2008, 461:9-20.
[160] Von Raumer J F, Stampfli G M. Palaeozoic peri-Gondwanan evolution[J]. Terra Nostra, 2000, 1:89.
[161] Stampfli G M, Marcoux J, Baud A. Tethyan margins in space and time[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1991, 87:373-409.
[162] Stampfli G M, Mosar J, Marquer D, et al. Subduction and obduction processes in the Swiss Alps[J]. Tectonophysics, 1998, 296:159-204.
[163] Stampfli G M, Borel G D, Cavazza W, et al. Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369)[J]. Episodes, 2001, 24:222-228.
[164] Stampfli G M, Von Raumer J F, Borel G D. The Palaeozoic evolution of pre-Variscan terranes:From peri-Gondwana to the Variscan collision[J]. Geological Society of America Special Papers, 2002, 364:263-280.
[165] Hauser M, Martini R, Matter A, et al. The break-up of East Gondwana along the northeast coast of Oman:evidence from the Batain basin[J]. Geological Magazine, 2002, 139:45-157.
[166] Fan H P, Zhu W G, Li Z X, et al. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia:The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block[J]. Lithos, 2013, 168:85-98.
[167] Pisarevsky S A, Sten-Åke E, Lauri J P, et al. Mesoproterozoic paleogeography:Supercontinent and beyond[J]. Precambrian Research, 2014, 244:207-225.
[168] Li Z X, Evans D A D, Halverson G. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232.
[169] Smirnov A V, Evans D A D, Ernst R E, et al. Trading partners:Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn[J]. Precambrian Research, 2013, 224:11-22.
[170] Zhang S H, Li Z X, Wu H C. New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia[J]. Precambrian Research, 2006, 144(3-4):213-238.
[171] Zhang N, Zhong S J, Leng W, et al. A model for the evolution of the Earth's mantle structure since the Early Paleozoic[J]. Journal of Geophysical Research-Solid Earth, 2010, 115(6):22.
[172] Zhang S H, Li Z X, Evans D A D, et al. Pre-Rodinia supercontinent Nuna shaping up:A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353:145-155.
[173] Li Z X, Evans D A D. Late Neoproterozoic 40 degrees intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia[J]. Geology, 2011, 39(1):39-42.
[174] Zhou J B, Li X H, Ge W C, et al. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia[J]. Gondwana Research, 2007, 12(1-2):184-197.
[175] Li Z X, Zhong S J. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics[J]. Physics of The Earth And Planetary Interiors, 2009, 176(3-4):143-156.
[176] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:A synthesis[J]. Precambrian Research, 2008a, 160(1-2):179-210.
[177] Li Z X, Li X H, Li W X, et al. Was Cathaysia part of Proterozoic Laurentia? new data from Hainan Island, south China[J]. Terra Nova, 2008b, 20(2):154-164.
[178] Zhong S J, Zhang N, Li Z X, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection[J]. Earth And Planetary Science Letters, 2007, 261(3-4):551-564.
[179] Hoffman P F, Li Z X. A palaeogeographic context for Neoproterozoic glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 277(3-4):158-172.
[180] Evans D A D, Pisarevsky S A. Plate tectonics on early Earth?——weighing the paleomagnetic evidence[C]//In:Condie K, Pease V (eds.). When Did Plate Tectonics Begin? Geological Society of America, Special Paper, 2008, 440:249-263.
[181] Bogdanova S V, Li Z X, Moores E M, et al. Testing the Rodinia hypothesis:Records in its building blocks[J]. Precambrian Research, 2008, 160(1-2):1-4.
[182] Cocks L, Robin M, Torsvik T H. The Palaeozoic geography of Laurentia and western Laurussia:A stable craton with mobile margins[J]. Earth-Science Reviews, 2011, 106(1-2):1-51.
[183] Cocks L, Robin M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117:40-79.
[184] Conrad C P, Steinberger B, Torsvik T H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics[J]. Nature, 2013, 498(7455):479-482.
[185] Torsvik T H, Cocks L, Robin M. From Wegener until now:the development of our understanding of Earth's Phanerozoic evolution[J]. Geologica Belgica, 2012a, 15(3):181-192.
[186] Torsvik T H, Van der Voo R, Preeden U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012b, 114(3-4):325-368.
-
计量
- 文章访问数: 1247
- PDF下载数: 21
- 施引文献: 0