西南印度洋脊50.5°E火山喷发高地是热点与洋中脊相互作用的产物吗?

梁裕扬, 李家彪. 西南印度洋脊50.5°E火山喷发高地是热点与洋中脊相互作用的产物吗?[J]. 海洋地质与第四纪地质, 2015, 35(1): 71-79. doi: 10.3724/SP.J.1140.2015.01071
引用本文: 梁裕扬, 李家彪. 西南印度洋脊50.5°E火山喷发高地是热点与洋中脊相互作用的产物吗?[J]. 海洋地质与第四纪地质, 2015, 35(1): 71-79. doi: 10.3724/SP.J.1140.2015.01071
LIANG Yuyang, LI Jiabiao. IS THE VOLCANIC ERUPTION HIGH THE PRODUCT OF HOTSPOT AND MID-OCEAN RIDGE INTERACTION?[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 71-79. doi: 10.3724/SP.J.1140.2015.01071
Citation: LIANG Yuyang, LI Jiabiao. IS THE VOLCANIC ERUPTION HIGH THE PRODUCT OF HOTSPOT AND MID-OCEAN RIDGE INTERACTION?[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 71-79. doi: 10.3724/SP.J.1140.2015.01071

西南印度洋脊50.5°E火山喷发高地是热点与洋中脊相互作用的产物吗?

  • 基金项目:

    大洋"973"项目子课题(2012CB417301)

    国家大洋专项(DYXM-115-02-3-01)

    国家自然科学基金项目(41176046)

    国家自然科学基金重点项目(91028006)

详细信息
    作者简介: 梁裕扬(1985-),男,博士生,海洋地球物理与构造地质学专业,E-mail:liangyy2012@gmail.com
  • 中图分类号: P736.1

IS THE VOLCANIC ERUPTION HIGH THE PRODUCT OF HOTSPOT AND MID-OCEAN RIDGE INTERACTION?

  • 观察西南印度洋脊(SWIR)27洋段(据Cannat等(1999)洋脊分段及命名)高分辨率多波束资料,发现其50.5°E轴部为一火山喷发高地,总体地形特征似乎类似受热点影响的洋脊。对该段洋脊地形作了详细分析,并结合受热点影响洋脊具有的一般特征,从地形地貌、地球物理场、岩石地球化学等方面分析了该段洋脊受热点影响的可能性。地形上缺少轴外地形表达,两翼也没有不对称现象;岩石地球化学上最普遍分布的仍是正常MORB。再者,在Crozet热点的相对运动历史轨迹上没有留下明显的痕迹,因此,其对相关洋脊产生有效影响的可能性并不大。综合SWIR 27洋段各方面特征,可说明其确实受某种因素影响,导致岩浆通量相比邻近洋段有大幅增加,但这种因素可能不是受热点影响,而是与大西洋中脊(MAR)上三段轴部地形异常的洋脊一样,是产生于由不均一地幔导致的洋脊局部岩浆增加。
  • 加载中
  • [1]

    Wilson J T. A possible origin of the Hawaiian Islands[J]. Canadian Journal of Physics, 1963, 41(6):863-870.

    [2]

    Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230:42-43.

    [3]

    王登红. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨[J]. 地学前缘, 2001, 8(3):67-72.

    [WANG Denghong. Basic concept, classification, evolution of mantle plume and large scale mineralization probe into southwestern China[J]. Earth Science Frontiers, 2001, 8(3):67-72.]

    [4]

    鄢全树, 石学法. 洋中脊与地幔柱热点相互作用研究进展[J]. 海洋地质与第四纪地质, 2006, 26(5):131-138.

    [YAN Quanshu, SHI Xuefa. Mantle plume(hotspot)ridge interaction[J]. Marine Geology and Quaternary Geology, 2006, 26(5):131-138.]

    [5]

    Dyment J, Lin J, Baker E T. Ridge-hotspot interactions:what mid-ocean ridges tell us about deep Earth processe[J]. Oceanography 2007, 20(1):102-115.

    [6]

    Schilling J G. Upper mantle heterogeneities and dynamics[J]. Nature, 1985, 314:62-67.

    [7]

    Gente P, Dyment J, Maia M, et al. Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr:Emplacement and rifting of the hot spot-derived plateaus[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10):105-112.

    [8]

    Maia M, Ackermand D, Dehghani G A, et al. The Pacific-Antarctic Ridge Foundation hotspot interaction:a case study of a ridge approaching a hotspot[J]. Marine Geology, 2000, 167(1):61-84.

    [9]

    Georgen J E, Lin J. Plume-transform interactions at ultra-slow spreading ridges:Implications for the Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9):87-92.

    [10]

    Maia M, Pessanha I, Courr ges E, et al. Building of the Amsterdam-Saint Paul plateau:A 10 Myr history of a ridge-hot spot interaction and variations in the strength of the hot spot source[J]. Journal of Geophysical Research, 2011, 116(B9).

    [11]

    Kincaid C, Schilling J G, Gable C. The dynamics of off-axis plume-ridge interaction in the uppermost mantle[J]. Earth and planetary science letters, 1996, 137(1):29-43.

    [12]

    Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E:interaction with the Crozet hotspot?[J]. Geophysical Journal International, 2009, 179(2):687-699.

    [13]

    Behn M D, Sinton J M, Detrick R S. Effect of the Galápagos hotspot on seafloor volcanism along the Galápagos Spreading Center (90.9°~97.6°W)[J]. Earth and Planetary Science Letters, 2004, 217(3-4):331-347.

    [14]

    Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965):405-412.

    [15]

    Sauter D, Cannat M, Roum jon S, et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years[J]. Nature Geoscience, 2013, 6(4):314-320.

    [16]

    Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge:effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3):283-300.

    [17]

    Zhang Tao, Lin Jian, Gao Jinyao. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge[J]. Science China Earth Sciences, 2013, 56(12):2186-2197.

    [18]

    Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E)[J]. Journal of Geophysical Research, 1999, 104(B10):22825.

    [19]

    Liang Yuyang, Li Jiabiao, Li Shoujun, et al. The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49° to 51°E)[J]. Acta Oceanologica Sinica, 2013, 32(12):87-95.

    [20]

    Jacoby W, Gudmundsson M T. Hotspot Iceland:An introduction[J]. Journal of Geodynamics, 2007, 43(1):1-5.

    [21]

    Riedel C, Ebbing J. Hotspot ridge interaction and its influence on Icelandic crust formation and dynamics[J]. Tectonophysics, 2008, 447(1):1-4.

    [22]

    Morgan W J. Rodriguez, Darwin, Amsterdam,..., a second type of hotspot island[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B11):5355-5360.

    [23]

    Small C. Observations of ridge-hotspot interactions in the Southern Ocean[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B5):17931-17946.

    [24]

    Mittelstaedt E, Ito G. Plume-ridge interaction, lithospheric stresses, and the origin of near-ridge volcanic lineaments[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(6):121-130.

    [25]

    Grevemeyer I. Hotspot-ridge interaction in the Indian Ocean:constraints from Geosat/ERM altimetry[J]. Geophysical Journal International, 1996, 126(3):796-804.

    [26]

    Leroy S, d'Acremont E, Tiberi C, et al. Recent off-axis volcanism in the eastern Gulf of Aden:Implications for plume ridge interaction[J]. Earth and Planetary Science Letters, 2010, 293(1-2):140-153.

    [27]

    Ito G, Lin J, Graham D. Observational and theoretical studies of the dynamics of mantle plume mid-ocean ridge interaction[J]. Reviews of Geophysics, 2003, 41(4):135-142.

    [28]

    Füri E, Hilton D R, Murton B J, et al. Helium isotope variations between R union Island and the Central Indian Ridge (17°~21°S):New evidence for ridge hot spot interaction[J]. Journal of Geophysical Research, 2011, 116(B2).

    [29]

    Breton T, Nauret F, Pichat S, et al. Geochemical heterogeneities within the Crozet hotspot[J]. Earth and Planetary Science Letters, 2013, 376:126-136.

    [30]

    Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. Science, 2004, 303(5656):338-343.

    [31]

    Montelli R, Nolet G, Dahlen F A, et al. A catalogue of deep mantle plumes:New results from finite-frequency tomography[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(11):133-142.

    [32]

    Van Der Hilst R D, Maarten V. Banana-doughnut kernels and mantle tomography[J]. Geophysical Journal International, 2005, 163(3):956-961.

    [33]

    Kokfelt T F, Lundstrom C, Hoernle K, et al. Plume-ridge interaction studied at the Gal pagos spreading center:Evidence from 226Ra-230Th-238U and 231Pa-235U isotopic disequilibria[J]. Earth and Planetary Science Letters, 2005, 234(1-2):165-187.

    [34]

    Zhang Tao, Lin Jian, Gao Jinyao. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma:Implications on the formation of oceanic plateaus and intra-plate seamounts[J]. Science China Earth Sciences, 2011, 54(8):1177-1188.

    [35]

    Foulger G R. The"plate"model for the genesis of melting anomalies[J]. Special Papers-Geological Society of America, 2007, 430(1):85-92.

    [36]

    Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between 49°15'E and 57°E:focused accretion and magma redistribution[J]. Earth and Planetary Science Letters, 2001, 192(3):303-317.

    [37]

    Hoernle K, Hauff F, Kokfelt T F, et al. On-and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5°~11°S):Shallow or deep recycling of ocean crust and/or intraplate volcanism?[J]. Earth and Planetary Science Letters, 2011, 306(1):86-97.

    [38]

    Paulick H, M nker C, Schuth S. The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism:Evidence from the southern Mid-Atlantic Ridge (7°30'S to 11°30'S) and Ascension Island[J]. Earth and Planetary Science Letters, 2010, 296(3):299-310.

    [39]

    Bruguier N J, Minshull T A, Brozena J M. Morphology and tectonics of the Mid-Atlantic Ridge, 7°~12°S[J]. Journal of Geophysical Research, 2003, 108(B2).

    [40]

    Regelous M, Niu Y, Abouchami W, et al. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust:Geochemical evidence from the Mid-Atlantic Ridge at 26°S[J]. Lithos, 2009, 112(1):57-72.

    [41]

    Niu Y, Bideau D, H kinian R, et al. Mantle compositional control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation A case study at the Mid-Atlantic Ridge 33°~35°N[J]. Earth and Planetary Science Letters, 2001, 186(3):383-399.

  • 加载中
计量
  • 文章访问数:  1080
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2014-02-17
修回日期:  2014-03-10

目录