-
摘要: 磷灰石裂变径迹作为一种低温热史重建的研究手段,现已用来约束断裂带的活动时限。但是,通过分析发现,在磷灰石裂变径迹——断裂带活动时限研究过程中仍然存在诸多制约因素,以致对研究结果造成比较大的干扰。其中,诸如矿物自身特征(如矿物成分、各向异性等)、实验操作及解译模型的选取,这都无疑增加了磷灰石热史重建的难度;岩石热导率、火山等构造活动、地层孔隙水含量等因素,更是造成了地温变化的多种解释;在目标断裂构造运动解译过程中,更是需要排除气候、周边断层构造活动的影响。最后以实验操纵、自然热冷却、周边断层构造运动因素为例,基于前人研究提出相应的解决方法,尽量消除上述影响因素关于断裂带研究的干扰,以提高解释的科学性、合理性。Abstract: Apatite fission track is often applied to timing of fault movement, as a typical research method for low temperature thermal reconstruction. Several factors may bring large impacts onto the results of the method, such as the complication caused by mineral characteristics (composition, anisotropy), manipulation procedures, and inversion models. It is even more complicated if taking account of different thermal conductivity of rocks, volcano activities, pore water content of the strata which are closely related to geothermal gradient. In addition, the climatic influence and the tectonic influence of adjacent faults have to be excluded in the fault activity timing. In order to improve the quality of results, we made some suggestions in this paper based on previous researches, such as the solutions to eliminate the interferences related to manipulation procedures, natural cooling and tectonic activity of adjacent faults.
-
Key words:
- apatite fission track /
- fault zone /
- timing of the movement /
- impact factors
-
-
[1] 常远,刘锐. 磷灰石裂变径迹技术与地学应用综述[J]. 上海地质,2004(1):47-53.[CHANG Yuan, LIU Rui. The summarization of fission-track technology and its applications in earth science[J]. Shanghai Geology,2004
(1):47-53.]
[2] Reiners P W, Ehlers T A, Zeitler P K. Past, present, and future of thermochronology[J]. Reviews In Mineralogy﹠Geochemistry,2005,58(1):1-18.
[3] Gleadow A J W, Duddy I R, Green P F,et al. Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis[J]. Contrib Mineral Petrol.,1986,94(4):405-415.
[4] Hejl E, Coyle D, Lal N, et al. Fission-track dating of the western border of the Bohemian massif:thermochronology and tectonic implications[J].Geol Rundsch,1997,86(1):210-219.
[5] 丁超,陈刚,李振华,等. 鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析[J].现代地质,2011,25(3):581-588.
[DING Chao, CEHN Gang, LI Zhenhua, et al. Apatite fission track analysis of tectono-thermal history in the northwest of Ordos Basin[J]. Geoscience,2011,25(3):581-588.]
[6] 胡圣标,张容燕,罗毓晖,等. 渤海盆地热历史及构造-热演化特征[J]. 地球物理学报,1999,42(6):748-755.
[HU Shengbiao, ZHANG Rongyan, LUO Yuhui, et al. Thermal history and tectonic-thermal evolution of Bohai Basin, East China[J]. Chinese Journal of Geophysics, 1999,42(6):748-755.]
[7] 来庆洲,丁林,王宏伟,等. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J].中国科学D辑:地球科学,2006,36(9):785-796.
[LAI Qingzhou, DING Lin, WANG Hongwei, et al. Thermal history of apatite fission track to restrict the extension movement of the eastern boundary of Tibetan Plateau[J]. Science in China(Series D Earth Science),2006,36(9):785-796.]
[8] 张进江,钟大赉,桑海清,等. 哀牢山-红河构造带古新世以来多期活动的构造和年代学证据[J]. 地质科学,2006,41(2):291-310.
[ZHANG Jinjiang, ZHONG Dalai, SAN Haiqing, et al. Structural and geochronological evidence for multiple episodes of deformation since Paleocene along the Ailao Shan-Red River shear zone, Southeastern Asia[J]. Chinese Journal of Geology,2006,41(2):291-310.]
[9] Nóbrega M A, Sá J M, Bezerra F H R, et al. The use of apatite fission track thermochronology to constrain fault movements and sedimentary basin evolution in northeastern Brazil[J]. Radiation measurements, 2005,39(6):627-633.
[10] Viola G, Anczkiewicz R. Exhumation history of the Red River shear zone in northern Vietnam:New insights from zircon and apatite fission-track analysis[J]. Journal of Asian Earth Science,2008,33(1-2):78-90.
[11] 郑家欣,裂变径迹年龄在断裂构造行迹中的应用[J].地震地质,1988,10(3):93-96.
[ZHENG Jiaxin. Application of fission track dating in the fracture tectonic trace[J]. Seismology and Geology,1988,10(3):93-96.]
[12] 王庆隆,万景林. 用裂变径迹法研究断层活动年龄的初步探讨[J]. 地震地质,1988,10(4):199-205.
[WANG Qinglong, WAN Jinglin. Application of fission track method of faulting[J]. Seismology and Geology,1988,10(4):199-205.]
[13] 万京林,王庆隆. 郯庐断裂活动年龄及热历史的裂变径迹研究[J]. 地球学报,1997,18(增刊):74-76.[WAN Jinglin, WANG Qinglong. Fission track analysis on the active ages and thermal histories of Tancheng-Lujiang Fault[J]. Acta Geoscientia Sinica, 1997
, 18(supplement):74-76.]
[14] 张峰,王世杰. 长江三峡坝区断层泥的裂变径迹法年龄[J]. 地质科学,2001,36(1):101-106.
[ZHANG Feng, WANG Shijie. Fission track age of fault gouge in the Yangtze Three-Gorge Dam Site[J]. Chinese Journal of Geology, 2001,36(1):101-106.]
[15] 杨坤光,马昌前. 大陆剥蚀速率与造山隆升速率研究的某些进展[J]. 地质科技情报,1996,15(4):89-96.
[YANG Kunguang, MA Changqian. Some advances in the rates of continental erosion and mountain uplift[J]. Geological Science and Technology Information,1996,15(4):89-96.]
[16] Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fission-track annealing kinetics:Ⅰ.Experimental results[J]. American Mineralogist, 1999,84:1213-1223.
[17] Ravenhurst C, Roden M K,Willett S D, et al. Dependence of fission track annealing on apatite crystal chemistry[C]//7th Int. Workshop Fission Track Thermochronology. Philadelphia. 1992,11(abstract).
[18] 周祖翼, Donelick R. 基于磷灰石裂变径迹分析数据的时间-温度历史的多元动力学模拟[J]. 石油实验地质,2001,23(1):97-102.
[ZHOU Zuyi, Donelick R. Multikinetic modelling for time-temperature history based on apatite fission track data[J]. Petroleum Geology &Experiment, 2001,23(1):97-102.]
[19] 付明希. 磷灰石裂变径迹退火动力学模型研究进展综述[J]. 地球物理学进展,2003,18(4):650-655.
[FU Mingxi. Review on the method of the apatite fission track annealing kinetics[J]. Progress in Geophysics,2003,18(4),650-655.]
[20] Ketcham R A. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurement[J]. Am. Mineral., 2003,88:817-829.
[21] 丁林. 裂变径迹定年方法的进展及应用[J]. 第四纪研究,1997(3):272-280.[DING Lin. Advance of fission-track analysis method and its application[J]. Quaternary Sciences, 1997
(3):272-280.]
[22] 胡圣标,汪集旸. 沉积盆地热体制研究的基本原理和进展[J]. 地学前缘,1995,2(3-4):171
-180.[HU Shengbiao, WANG Jiyang. Principles and progresses on thermal regime of sedimentary basins-an overview[J]. Earth Science Frontiers(China University of Geosciences,Beijing),1995,2(3-4):171-180.]
[23] Miller D S, Crowley K D, Dokka R K, et al. Results of interlaboratory comparison of fission track ages for 1992 fission track workshop[J]. Nuclear Tracks and Radiation Measurements, 1993,21(4):565-573.
[24] Ketcham R A, Donelick R A, Balestrisri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 2009, 284(3-4):504-515.
[25] Barbarand J, Hurford T, Carter A. Variation in apatite fission-track length measurement:implications for thermal history modelling[J]. Chemical Geology, 2003,198(1-2):77-106.
[26] 李松峰,徐思煌. 磷灰石裂变径迹研究进展[J]. 重庆科技学院学报:自然科学版,2009,11(1):61-64.
[LI Songfeng, XU Sihuang. Study on progress of apatite fission track[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2009, 11(1):61-64.]
[27] Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission track annealing kinectics:ⅢExtrapolation to geological time scales[J]. American Mineralogist, 1999, 84:1235-1255.
[28] 沈传波,梅廉夫,凡元芳,等. 磷灰石裂变径迹热年代学研究的进展与展望[J]. 地质科技情报,2005,24(2):57-63.
[SHEN Chuanbo, MEI Lianfu, FAN Yuanfang, et al. Advances and prospects of apatite fission track thermochronology[J]. Geological Science and Technology Information,2005,24(2):57-63.]
[29] Tanaka H, Chen W M,Kawabata K, et al. Thermal properties across the Chelungpu fault zone and evaluations of positive thermal anomaly on the slip zones:Are these residuals of heat from faulting?[J]. Geophysical Research Letters,2007,34(1):309-314.
[30] Fialko Y, Khazan Y. Fusion by earthquake fault friction:stick or slip?[J]. Journal of Geophysical Research:Solid Earth,2005,110(B12):407-421.
[31] 邱楠生,杨海波,王绪龙. 准噶尔盆地构造——热演化特征[J]. 地质科学,2002,37(4):423-429.
[QIU Nansheng, YANG Haibo, WANG Xulong. Tectono-thermal evolution in the Junggar basin[J]. Chinese Journal of Geology,2002,37(4):423-429.]
[32] Fulton P M, Harris R N, Saffer D M, et al. Does hydrologic circulation mask frictional heat on faults after large earthquakes?[J]. Journal of Geophysical Research,2010,115(B9):402-414.
[33] Fulton P. The role of advection on fault zone temperature after an earthquake[Z].2008.
[34] Kano Y, Mori J, Fujio R, et al. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake[J]. Geophysical Research Letters,2006,33(L14):306-309.
[35] 王良书,李成,刘绍文,等. 塔里木盆地北缘库车前陆盆地地温梯度分布特征[J]. 地球物理学报,2003,46(3):403-407.
[WANG Liangshu, LI Cheng, LIU Shaowen, et al. Geotemperature gradient distribution of Kuqa Forland Basin, north of Tarim, China[J]. Chinese Journal of Geophysics,2003,46(3):403-407.]
[36] Yamada R, Mizoguchi K. Thermal anomaly and strength of Atotsugawa fault, central Japan, inferred from fission-track thermochronology[C]//Developments in heat transfer. Winchester:InTech,2011:81-90.
[37] 张有学. 地球化学动力学[M]. 北京:高等教育出版社,2010:59.[ZHANG Youxue. Geochemical Kinetics[M]. Beijing:Higher Education Press,2010:59.]
[38] Rolland Y, Pecher A. The Pangong granulites of the Karakoram fault (western Tibet):vertical extrusion within a lithosphere scale fault?[J]. Earth and Planetary Science, 2001, 332(6):363-370.
[39] 李海兵,Valli Frank,Arnaud Nicolas,等. 喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据[J]. 岩石学报,2008,24(7):1552-1566.
[LI Haibing, Frank V, Nicolas A, et al. Rapid uplifting in the process of strike-slip along the Karakorum fault zone in western Tibet:evidence from 40Ar/39Ar thermochronology[J]. Acta Petrologica Sinica, 2008, 24(7):1552-1566.]
[40] Harrison T M, McDougall I. Investigations of an instrusive contact,northwest Nelson,New Zealand,Ⅰ:thermal, chronological and isotopic constraints[J]. Geochim. Cosmochim. Acta, 1980,44(12):1985-2003.
[41] 王先美,钟大赉,王毅. 利用磷灰石裂变径迹约束脆性断裂活动的时限[J]. 地球物理学进展,2008,23(5):1444-1455.
[WANG Xianmei, ZHONG Dalai, WANG Yi. A case of application using apatite fission track to restrict the time of brittle fault movement[J]. Progress in Geophysics, 2008, 23(5):1444-1455.]
[42] 常远,周祖翼. 利用低温热年代学数据计算剥露速率的基本方法[J]. 科技导报,2010,28(21):86-94.
[CHANG Yuan, ZHOU Zuyi. Basic methods to inverse exhumation rates using low-temperature thermochronological data[J]. Science & Technology Review, 2010, 28(21):86-94.]
[43] 王非. 山体隆升和剥离速率的研究方法[C]//固体地球科学研究方法. 北京:科学出版社,2013:937-951.[WANG Fei. The Research Methods of Mountain Uplifting and Stripping rate[C]//The Research Methods of Solid Earth Sciences. Beijing:Science Press,2013:937
-951.]
-
计量
- 文章访问数: 1085
- PDF下载数: 3
- 施引文献: 0