利用磷灰石裂变径迹约束断裂活动时限的制约因素

宫伟, 姜效典. 利用磷灰石裂变径迹约束断裂活动时限的制约因素[J]. 海洋地质与第四纪地质, 2015, 35(2): 101-109. doi: 10.3724/SP.J.1140.2015.02101
引用本文: 宫伟, 姜效典. 利用磷灰石裂变径迹约束断裂活动时限的制约因素[J]. 海洋地质与第四纪地质, 2015, 35(2): 101-109. doi: 10.3724/SP.J.1140.2015.02101
GONG Wei, JIANG Xiaodian. APPLICATION OF APATITE FISSION TRACK TO TIMING FAULT MOVEMENT AND CONSTRAINTS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 101-109. doi: 10.3724/SP.J.1140.2015.02101
Citation: GONG Wei, JIANG Xiaodian. APPLICATION OF APATITE FISSION TRACK TO TIMING FAULT MOVEMENT AND CONSTRAINTS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 101-109. doi: 10.3724/SP.J.1140.2015.02101

利用磷灰石裂变径迹约束断裂活动时限的制约因素

  • 基金项目:

    中国地质调查局项目(GZH200900504-217-3)

    国家自然科学基金项目(41176038)

详细信息
    作者简介: 宫伟(1990-),男,硕士生,主要从事构造地质研究,E-mail:1310937054@qq.com
    通讯作者: 姜效典, xdjiang@ouc.edu.cn
  • 中图分类号: P533

APPLICATION OF APATITE FISSION TRACK TO TIMING FAULT MOVEMENT AND CONSTRAINTS

More Information
  • 磷灰石裂变径迹作为一种低温热史重建的研究手段,现已用来约束断裂带的活动时限。但是,通过分析发现,在磷灰石裂变径迹——断裂带活动时限研究过程中仍然存在诸多制约因素,以致对研究结果造成比较大的干扰。其中,诸如矿物自身特征(如矿物成分、各向异性等)、实验操作及解译模型的选取,这都无疑增加了磷灰石热史重建的难度;岩石热导率、火山等构造活动、地层孔隙水含量等因素,更是造成了地温变化的多种解释;在目标断裂构造运动解译过程中,更是需要排除气候、周边断层构造活动的影响。最后以实验操纵、自然热冷却、周边断层构造运动因素为例,基于前人研究提出相应的解决方法,尽量消除上述影响因素关于断裂带研究的干扰,以提高解释的科学性、合理性。
  • 加载中
  • [1]

    常远,刘锐. 磷灰石裂变径迹技术与地学应用综述[J]. 上海地质,2004(1):47-53.[CHANG Yuan, LIU Rui. The summarization of fission-track technology and its applications in earth science[J]. Shanghai Geology,2004

    (1):47-53.]

    [2]

    Reiners P W, Ehlers T A, Zeitler P K. Past, present, and future of thermochronology[J]. Reviews In Mineralogy﹠Geochemistry,2005,58(1):1-18.

    [3]

    Gleadow A J W, Duddy I R, Green P F,et al. Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis[J]. Contrib Mineral Petrol.,1986,94(4):405-415.

    [4]

    Hejl E, Coyle D, Lal N, et al. Fission-track dating of the western border of the Bohemian massif:thermochronology and tectonic implications[J].Geol Rundsch,1997,86(1):210-219.

    [5]

    丁超,陈刚,李振华,等. 鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析[J].现代地质,2011,25(3):581-588.

    [DING Chao, CEHN Gang, LI Zhenhua, et al. Apatite fission track analysis of tectono-thermal history in the northwest of Ordos Basin[J]. Geoscience,2011,25(3):581-588.]

    [6]

    胡圣标,张容燕,罗毓晖,等. 渤海盆地热历史及构造-热演化特征[J]. 地球物理学报,1999,42(6):748-755.

    [HU Shengbiao, ZHANG Rongyan, LUO Yuhui, et al. Thermal history and tectonic-thermal evolution of Bohai Basin, East China[J]. Chinese Journal of Geophysics, 1999,42(6):748-755.]

    [7]

    来庆洲,丁林,王宏伟,等. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J].中国科学D辑:地球科学,2006,36(9):785-796.

    [LAI Qingzhou, DING Lin, WANG Hongwei, et al. Thermal history of apatite fission track to restrict the extension movement of the eastern boundary of Tibetan Plateau[J]. Science in China(Series D Earth Science),2006,36(9):785-796.]

    [8]

    张进江,钟大赉,桑海清,等. 哀牢山-红河构造带古新世以来多期活动的构造和年代学证据[J]. 地质科学,2006,41(2):291-310.

    [ZHANG Jinjiang, ZHONG Dalai, SAN Haiqing, et al. Structural and geochronological evidence for multiple episodes of deformation since Paleocene along the Ailao Shan-Red River shear zone, Southeastern Asia[J]. Chinese Journal of Geology,2006,41(2):291-310.]

    [9]

    Nóbrega M A, Sá J M, Bezerra F H R, et al. The use of apatite fission track thermochronology to constrain fault movements and sedimentary basin evolution in northeastern Brazil[J]. Radiation measurements, 2005,39(6):627-633.

    [10]

    Viola G, Anczkiewicz R. Exhumation history of the Red River shear zone in northern Vietnam:New insights from zircon and apatite fission-track analysis[J]. Journal of Asian Earth Science,2008,33(1-2):78-90.

    [11]

    郑家欣,裂变径迹年龄在断裂构造行迹中的应用[J].地震地质,1988,10(3):93-96.

    [ZHENG Jiaxin. Application of fission track dating in the fracture tectonic trace[J]. Seismology and Geology,1988,10(3):93-96.]

    [12]

    王庆隆,万景林. 用裂变径迹法研究断层活动年龄的初步探讨[J]. 地震地质,1988,10(4):199-205.

    [WANG Qinglong, WAN Jinglin. Application of fission track method of faulting[J]. Seismology and Geology,1988,10(4):199-205.]

    [13]

    万京林,王庆隆. 郯庐断裂活动年龄及热历史的裂变径迹研究[J]. 地球学报,1997,18(增刊):74-76.[WAN Jinglin, WANG Qinglong. Fission track analysis on the active ages and thermal histories of Tancheng-Lujiang Fault[J]. Acta Geoscientia Sinica, 1997

    , 18(supplement):74-76.]

    [14]

    张峰,王世杰. 长江三峡坝区断层泥的裂变径迹法年龄[J]. 地质科学,2001,36(1):101-106.

    [ZHANG Feng, WANG Shijie. Fission track age of fault gouge in the Yangtze Three-Gorge Dam Site[J]. Chinese Journal of Geology, 2001,36(1):101-106.]

    [15]

    杨坤光,马昌前. 大陆剥蚀速率与造山隆升速率研究的某些进展[J]. 地质科技情报,1996,15(4):89-96.

    [YANG Kunguang, MA Changqian. Some advances in the rates of continental erosion and mountain uplift[J]. Geological Science and Technology Information,1996,15(4):89-96.]

    [16]

    Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fission-track annealing kinetics:Ⅰ.Experimental results[J]. American Mineralogist, 1999,84:1213-1223.

    [17]

    Ravenhurst C, Roden M K,Willett S D, et al. Dependence of fission track annealing on apatite crystal chemistry[C]//7th Int. Workshop Fission Track Thermochronology. Philadelphia. 1992,11(abstract).

    [18]

    周祖翼, Donelick R. 基于磷灰石裂变径迹分析数据的时间-温度历史的多元动力学模拟[J]. 石油实验地质,2001,23(1):97-102.

    [ZHOU Zuyi, Donelick R. Multikinetic modelling for time-temperature history based on apatite fission track data[J]. Petroleum Geology &Experiment, 2001,23(1):97-102.]

    [19]

    付明希. 磷灰石裂变径迹退火动力学模型研究进展综述[J]. 地球物理学进展,2003,18(4):650-655.

    [FU Mingxi. Review on the method of the apatite fission track annealing kinetics[J]. Progress in Geophysics,2003,18(4),650-655.]

    [20]

    Ketcham R A. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurement[J]. Am. Mineral., 2003,88:817-829.

    [21]

    丁林. 裂变径迹定年方法的进展及应用[J]. 第四纪研究,1997(3):272-280.[DING Lin. Advance of fission-track analysis method and its application[J]. Quaternary Sciences, 1997

    (3):272-280.]

    [22]

    胡圣标,汪集旸. 沉积盆地热体制研究的基本原理和进展[J]. 地学前缘,1995,2(3-4):171

    -180.[HU Shengbiao, WANG Jiyang. Principles and progresses on thermal regime of sedimentary basins-an overview[J]. Earth Science Frontiers(China University of Geosciences,Beijing),1995,2(3-4):171-180.]

    [23]

    Miller D S, Crowley K D, Dokka R K, et al. Results of interlaboratory comparison of fission track ages for 1992 fission track workshop[J]. Nuclear Tracks and Radiation Measurements, 1993,21(4):565-573.

    [24]

    Ketcham R A, Donelick R A, Balestrisri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 2009, 284(3-4):504-515.

    [25]

    Barbarand J, Hurford T, Carter A. Variation in apatite fission-track length measurement:implications for thermal history modelling[J]. Chemical Geology, 2003,198(1-2):77-106.

    [26]

    李松峰,徐思煌. 磷灰石裂变径迹研究进展[J]. 重庆科技学院学报:自然科学版,2009,11(1):61-64.

    [LI Songfeng, XU Sihuang. Study on progress of apatite fission track[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2009, 11(1):61-64.]

    [27]

    Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission track annealing kinectics:ⅢExtrapolation to geological time scales[J]. American Mineralogist, 1999, 84:1235-1255.

    [28]

    沈传波,梅廉夫,凡元芳,等. 磷灰石裂变径迹热年代学研究的进展与展望[J]. 地质科技情报,2005,24(2):57-63.

    [SHEN Chuanbo, MEI Lianfu, FAN Yuanfang, et al. Advances and prospects of apatite fission track thermochronology[J]. Geological Science and Technology Information,2005,24(2):57-63.]

    [29]

    Tanaka H, Chen W M,Kawabata K, et al. Thermal properties across the Chelungpu fault zone and evaluations of positive thermal anomaly on the slip zones:Are these residuals of heat from faulting?[J]. Geophysical Research Letters,2007,34(1):309-314.

    [30]

    Fialko Y, Khazan Y. Fusion by earthquake fault friction:stick or slip?[J]. Journal of Geophysical Research:Solid Earth,2005,110(B12):407-421.

    [31]

    邱楠生,杨海波,王绪龙. 准噶尔盆地构造——热演化特征[J]. 地质科学,2002,37(4):423-429.

    [QIU Nansheng, YANG Haibo, WANG Xulong. Tectono-thermal evolution in the Junggar basin[J]. Chinese Journal of Geology,2002,37(4):423-429.]

    [32]

    Fulton P M, Harris R N, Saffer D M, et al. Does hydrologic circulation mask frictional heat on faults after large earthquakes?[J]. Journal of Geophysical Research,2010,115(B9):402-414.

    [33]

    Fulton P. The role of advection on fault zone temperature after an earthquake[Z].2008.

    [34]

    Kano Y, Mori J, Fujio R, et al. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake[J]. Geophysical Research Letters,2006,33(L14):306-309.

    [35]

    王良书,李成,刘绍文,等. 塔里木盆地北缘库车前陆盆地地温梯度分布特征[J]. 地球物理学报,2003,46(3):403-407.

    [WANG Liangshu, LI Cheng, LIU Shaowen, et al. Geotemperature gradient distribution of Kuqa Forland Basin, north of Tarim, China[J]. Chinese Journal of Geophysics,2003,46(3):403-407.]

    [36]

    Yamada R, Mizoguchi K. Thermal anomaly and strength of Atotsugawa fault, central Japan, inferred from fission-track thermochronology[C]//Developments in heat transfer. Winchester:InTech,2011:81-90.

    [37]

    张有学. 地球化学动力学[M]. 北京:高等教育出版社,2010:59.[ZHANG Youxue. Geochemical Kinetics[M]. Beijing:Higher Education Press,2010:59.]

    [38]

    Rolland Y, Pecher A. The Pangong granulites of the Karakoram fault (western Tibet):vertical extrusion within a lithosphere scale fault?[J]. Earth and Planetary Science, 2001, 332(6):363-370.

    [39]

    李海兵,Valli Frank,Arnaud Nicolas,等. 喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据[J]. 岩石学报,2008,24(7):1552-1566.

    [LI Haibing, Frank V, Nicolas A, et al. Rapid uplifting in the process of strike-slip along the Karakorum fault zone in western Tibet:evidence from 40Ar/39Ar thermochronology[J]. Acta Petrologica Sinica, 2008, 24(7):1552-1566.]

    [40]

    Harrison T M, McDougall I. Investigations of an instrusive contact,northwest Nelson,New Zealand,Ⅰ:thermal, chronological and isotopic constraints[J]. Geochim. Cosmochim. Acta, 1980,44(12):1985-2003.

    [41]

    王先美,钟大赉,王毅. 利用磷灰石裂变径迹约束脆性断裂活动的时限[J]. 地球物理学进展,2008,23(5):1444-1455.

    [WANG Xianmei, ZHONG Dalai, WANG Yi. A case of application using apatite fission track to restrict the time of brittle fault movement[J]. Progress in Geophysics, 2008, 23(5):1444-1455.]

    [42]

    常远,周祖翼. 利用低温热年代学数据计算剥露速率的基本方法[J]. 科技导报,2010,28(21):86-94.

    [CHANG Yuan, ZHOU Zuyi. Basic methods to inverse exhumation rates using low-temperature thermochronological data[J]. Science & Technology Review, 2010, 28(21):86-94.]

    [43]

    王非. 山体隆升和剥离速率的研究方法[C]//固体地球科学研究方法. 北京:科学出版社,2013:937-951.[WANG Fei. The Research Methods of Mountain Uplifting and Stripping rate[C]//The Research Methods of Solid Earth Sciences. Beijing:Science Press,2013:937

    -951.]

  • 加载中
计量
  • 文章访问数:  1085
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2014-05-17
修回日期:  2014-07-24

目录