VARIATION IN SURFACE AND THERMOCLINE TEMPERATURE OF THE EASTERN TIMOR SEA FOR THE LAST 30 KA AND ITS PALEOCEANOGRAPHIC IMPLICATIONS
-
摘要: 研究了钻取于东帝汶海印尼穿越流出口处MD98-2172岩心沉积物,分析了浮游有孔虫表层水种Globigerinoides ruber和温跃层水种Pulleniatina obliquiloculata的Mg/Ca值,重建了30 kaBP以来东帝汶海区的表层水温度和温跃层水温度。结果显示东帝汶海区末次冰盛期以来表层水温度距早全新世的最大温差约为4.2℃;冰消期间表层水温度有两次显著的降温事件,可分别与新仙女木事件和海因里希事件1对应;约15 kaBP以来帝汶海表层水温度与南极大气温度记录同相位变化,说明热带海区与高纬度地区气候变化有着紧密联系。末次冰盛期以来温跃层水温度距早全新世的最大温差约为4℃;全新世温跃层水温度呈现出波动降低的过程,最大降温幅度约3℃;表层水温度和次表层水温度差值在全新世逐渐增加,指示了温跃层深度的持续变浅,这一变化可能与海平面上升、季风活动和厄尔尼诺-南方涛动事件影响的印度尼西亚穿越流次表层流增强有关。Abstract: We studied the sediments of core MD98-2172 taken from the eastern Timor Sea within the main path of outflow of ITF. Sea surface temperature (SST) and thermocline water temperature (TWT) were reconstructed for the last 30 ka with Mg/Ca in shells of Globigerinoides ruber and Pulleniatina obliquiloculata. The SST records show a substantial glacial-interglacial cycle, with a maximum difference of 4.2℃during the last deglaciation, while the TWT shows a maximum of difference about 4℃throughout the period from last glacial maximum to early Holocene. Two cold events occurred during the deglaciation according to SST, corresponding to the Younger Drays (YD) and Heinrich event 1 (H1) respectively. The SST records vary in phase with climatic change revealed by the Antarctic ice core. It suggests that there is a closely link between the tropical sea and the climatic change in high latitudes. A strongly decline of temperature (3℃) was seen in TWT records. The difference between SST and TWT increases during Holocene, indicating that the thermocline depth is getting shallower. We speculate that all of the sea level rise, monsoon activity and ENSO may have played important roles in influencing thermocline depth of the ITF outflow.
-
-
[1] Oppo D W, Rosenthal Y. The Great Indo-Pacific Communicator[J]. Science, 2010, 328(5985):1492-1494.
[2] Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):115-128.
[3] Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean:2004-2006[J]. Journal of Geophysical Research-Oceans, 2009, 114:19.
[4] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3(8):578-583.
[5] Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960):824-828.
[6] Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39:7.
[7] Wang B, Liu J, Kim H J, et al. Recent change of the global monsoon precipitation (1979-2008)[J]. Climate Dynamics, 2012, 39(5):1123-1135.
[8] Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nino-Southern Oscillation[J]. Quaternary International, 2004, 118:127-143.
[9] Ding X, Bassinot F, Guichard F, et al. Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum[J]. Marine Micropaleontology, 2013, 101:115-126.
[10] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724.
[11] Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2).
[12] Xu J, Kuhnt W, Holbourn A, et al. Changes in the vertical profile of the Indonesian Throughflow during Termination Ⅱ:Evidence from the Timor Sea[J]. Paleoceanography, 2006, 21(4).
[13] Mohtadi M, Luckge A, Steinke S, et al. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean[J]. Quaternary Science Reviews, 2010, 29(7-8):887-896.
[14] Dang H, Jian Z, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1).
[15] Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry Geophysics Geosystems, 2003, 4(9).
[16] de Villiers S, Greaves M, Elderfield H. An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES[J]. Geochemistry Geophysics Geosystems, 2002, 3(1).
[17] Rosenthal Y, Lohmann G P, Lohmann K C, et al. Incorporation and preservation of Mg in Globigerinoides sacculifer:Implications for reconstructing the temperature and O-18/O-16 of seawater[J]. Paleoceanography, 2000, 15(1):135-145.
[18] Dekens P S, Lea D W, Pak D K, et al. Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002, 3(4):1-29.
[19] Rosenthal Y, Lohmann G P. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3):6.
[20] Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2009, Volume 1:Temperature. S. Levitus, Ed.[C]//NOAA Atlas NESDIS 68, US Government Printing Office, Washington, DC, 2010:184.
[21] Liu Z, Yang H. Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel[J]. Geophysical Research Letters, 2003, 30(5).
[22] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919):152-155.
[23] Tian C, Tian J. Warming magnitude of Indonesian Throughflow during the penultimate deglaciation (Termination Ⅱ) and its relationship with climate change in high-latitude regions[J]. Chinese Science Bulletin, 2010, 55(32):3709-3717.
[24] Xu J, Holbourn A, Kuhnt W G, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 273(1-2):152-162.
[25] Gibbons F T. The Centennial and Millennial Variability of the IndoPacific Warm Pool and the Indonesian Throughflow[D].Massachusetts Institute of Technology,2012.
[26] Sarnthein M, Grootes P M, Holbourn A, et al. Tropical warming in the Timor Sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr[J]. Earth and Planetary Science Letters, 2011, 302(3-4):337-348.
[27] Fan W, Jian Z, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows:Evidences from the Makassar Strait[J]. Global and Planetary Change, 2013, 111:111-117.
[28] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr:Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26(1).
[29] Gordon A L. Oceanography-The brawniest retroflection[J]. Nature, 2003, 421(6926):904-905.
[30] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2(9):636-639.
[31] Andersen K K, Azuma N, Barnola J-M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005):147-151.
[32] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.
[33] Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 1996, 382(6588):241-244.
[34] Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J]. Quaternary Science Reviews, 2006, 25(23):3322-3337.
[35] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1-3):295-305.
[36] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Nio/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912):162-165.
-
计量
- 文章访问数: 1190
- PDF下载数: 5
- 施引文献: 0