Development Efficiency Evaluation of Mineral Resources in Sichuan Province Based on DEA-Malmquist Model
-
摘要:
提高矿产资源开发效率有利于加强资源保障能力,对促进地区可持续发展有着重大现实意义。为探究四川省矿产资源开发效率提升路径,本文采用DEA-BCC模型和Malmquist指数模型对四川省2010~2018年21个市州的矿产资源开发效率分别从静态和动态两个角度进行测度评价。结果表明,四川省矿产资源开发水平正在逐步提升,技术进步是效率提高的主要动力,但纯技术效率和规模效率仍具有较大提升空间。其次,区域之间矿产资源开发效率存在差异,成都平原以及攀西地区开发效率提升最为明显,川南、川东北等地区矿产资源开发效率提升则相对缓慢。本文最后根据评价结果提出对策建议为提高矿产资源开发效率提供参考。
-
关键词:
- 开发效率 /
- DEA-BCC模型 /
- Malmquist指数
Abstract:Improving the efficiency of mineral resource development is conducive to strengthening the ability to guarantee resources, and is of great practical significance to promoting the sustainable development of the region. In order to explore the improvement path of mineral resource development efficiency in Sichuan Province, this paper uses DEA-BCC model and Malmquist index model to measure and evaluate the mineral resource development efficiency of 21 cities and prefectures in Sichuan Province from 2010 to 2018 from static and dynamic perspectives. The results show that the development level of mineral resources in Sichuan Province is gradually improving, and technological progress is the main driving force for efficiency improvement, but there is still much room for improvement in pure technical efficiency and scale efficiency. Secondly, there are differences in the efficiency of mineral resource development between regions. The development efficiency of the Chengdu Plain and Panxi Region has improved the most, while the improvement of mineral resource development efficiency in southern and northeastern Sichuan has been relatively slow. At the end of this article, countermeasures and suggestions are put forward based on the evaluation results to provide references for improving the efficiency of mineral resource development.
-
Key words:
- Mineral resources development /
- DEA-BCC model /
- Malmquist index
-
-
表 1 四川省矿产资源开发投入产出指标
Table 1. Input and output indicators for the development of mineral resources in Sichuan Province
一级指标 二级指标 三级指标 单位 投入指标 社会投入 矿山企业数 家 劳动力投入 年末矿业从业人员数 人 资源消耗 资源消耗量 万吨 产出指标 经济效益 工业总产值 万元 综合利用产值 万元 表 2 四川省各市州2010年、2015年和2018年矿产资源开发效率值及其分解
Table 2. Efficiency value of mineral resource development and its decomposition in the cities and prefectures of Sichuan Province in 2010, 2015 and 2018
地区 2010 2015 2018 TE PTE SE 规模报酬 TE PTE SE 规模报酬 TE PTE SE 规模报酬 攀枝花市 1.000 1.000 1.000 不变 1.000 1.000 1.000 不变 1.000 1.000 1.000 不变 凉山州 0.918 1.000 0.918 递减 1.000 1.000 1.000 不变 1.000 1.000 1.000 不变 攀西地区 0.959 1.000 0.959 -- 1.000 1.000 1.000 -- 1.000 1.000 1.000 -- 甘孜州 1.000 1.000 1.000 不变 1.000 1.000 1.000 不变 1.000 1.000 1.000 不变 阿坝州 0.398 1.000 0.398 递增 0.773 1.000 0.773 递增 0.489 1.000 0.489 递增 川西北地区 0.699 1.000 0.699 -- 0.886 1.000 0.886 -- 0.745 1.000 0.745 -- 宜宾市 0.515 0.805 0.640 递减 0.323 0.333 0.971 递增 0.303 0.315 0.960 递增 内江市 0.438 0.642 0.682 递减 0.302 0.303 0.999 递减 0.263 0.286 0.919 递增 泸州市 0.510 0.911 0.560 递减 0.424 0.424 1.000 递减 0.277 0.300 0.925 递增 乐山市 0.312 0.348 0.895 递减 0.272 0.272 0.998 递增 0.243 0.259 0.937 递增 自贡市 0.178 0.215 0.829 递增 0.247 0.437 0.564 递增 0.253 0.403 0.628 递增 川南地区 0.391 0.584 0.721 -- 0.314 0.354 0.907 -- 0.268 0.313 0.874 -- 成都市 0.317 0.371 0.855 递增 1.000 1.000 1.000 不变 1.000 1.000 1.000 不变 绵阳市 0.216 0.218 0.990 递增 0.187 0.204 0.918 递增 0.104 0.170 0.614 递增 德阳市 0.359 0.475 0.755 递减 0.680 0.704 0.966 递减 0.450 0.569 0.791 递增 眉山市 0.372 0.384 0.970 递增 0.372 0.382 0.973 递增 0.280 0.410 0.683 递增 遂宁市 0.393 0.553 0.710 递增 0.398 0.740 0.537 递增 0.267 0.731 0.365 递增 雅安市 0.266 0.273 0.972 递减 0.272 0.285 0.957 递增 0.366 0.392 0.934 递增 资阳市 0.183 0.306 0.599 递增 0.209 0.397 0.526 递增 0.226 0.642 0.352 递增 成都平原地区 0.301 0.369 0.836 -- 0.445 0.530 0.840 -- 0.385 0.559 0.677 -- 南充市 0.430 0.464 0.927 递增 0.426 0.475 0.897 递增 0.337 0.485 0.695 递增 达州市 0.195 0.378 0.517 递减 0.155 0.157 0.985 递增 0.201 0.202 0.996 递减 广安市 0.520 0.674 0.772 递减 0.299 0.315 0.948 递增 0.446 0.474 0.942 递增 巴中市 0.425 0.457 0.931 递增 0.889 0.930 0.957 递增 0.361 0.482 0.749 递增 广元市 0.338 0.531 0.637 递减 0.252 0.262 0.962 递增 0.156 0.176 0.886 递增 川东北地区 0.382 0.501 0.757 -- 0.404 0.428 0.950 -- 0.300 0.364 0.853 -- 均值 0.442 0.572 0.788 -- 0.499 0.553 0.902 -- 0.430 0.538 0.803 -- 表 3 2010-2018年四川省矿产资源开发TFP指数及其分解
Table 3. TFP index and its decomposition of mineral resources development in Sichuan Province from 2010 to 2018
年份 effch techch pech sech tfpch 2010~2011 1.022 1.007 0.935 1.093 1.029 2011~2012 0.865 1.071 0.892 0.97 0.927 2012~2013 0.872 1.092 0.921 0.947 0.952 2013~2015 1.384 0.999 1.239 1.117 1.382 2015~2016 0.876 1.429 1.098 0.797 1.252 2016~2017 1.174 0.813 0.975 1.205 0.954 2017~2018 0.826 1.577 0.952 0.868 1.302 均值 0.986 1.116 0.996 0.990 1.100 表 4 2010~2018年四川省各市州矿产资源开发全要素生产率及其指数分解
Table 4. Total factor productivity and its index decomposition of mineral resources development in all cities and prefectures of Sichuan Province from 2010 to 2018
地区 effch techch pech sech tfpch 攀枝花市 1.000 1.146 1.000 1.000 1.146 凉山州 1.012 1.115 1.000 1.012 1.129 攀西地区 1.006 1.131 1.000 1.006 1.138 甘孜州 1.000 1.011 1.000 1.000 1.011 阿坝州 1.030 1.093 1.000 1.030 1.126 川西北地区 1.015 1.052 1.000 1.015 1.069 宜宾市 0.927 1.084 0.883 1.050 1.004 内江市 0.930 1.052 0.915 1.016 0.978 泸州市 0.917 1.105 0.863 1.062 1.013 乐山市 0.965 1.131 0.974 0.991 1.091 自贡市 1.051 1.094 1.087 0.967 1.150 川南地区 0.958 1.093 0.944 1.017 1.047 成都市 1.178 1.320 1.136 1.037 1.556 绵阳市 0.901 1.166 1.015 0.887 1.051 德阳市 1.033 1.135 1.072 0.963 1.171 眉山市 0.960 1.124 1.038 0.925 1.079 遂宁市 0.946 1.121 1.036 0.913 1.061 雅安市 1.047 1.064 1.061 0.986 1.114 资阳市 1.031 1.091 1.074 0.959 1.124 成都平原地区 1.014 1.146 1.062 0.953 1.165 南充市 0.966 1.155 1.015 0.951 1.116 达州市 1.004 1.086 0.947 1.060 1.091 广安市 0.978 1.118 0.966 1.013 1.094 巴中市 0.977 1.134 0.995 0.982 1.108 广元市 0.895 1.119 0.883 1.014 1.002 川东北地区 0.964 1.122 0.961 1.004 1.082 均值 0.986 1.116 0.996 0.990 1.100 -
[1] 鞠建华, 强海洋. 中国矿业绿色发展的趋势和方向[J]. 中国矿业, 2017, 26(2):7-12. doi: 10.3969/j.issn.1004-4051.2017.02.002
JU J H, QIANG H Y. The trend and direction of green development of the mining industry in China[J]. China Mining Magazine, 2017, 26(2):7-12. doi: 10.3969/j.issn.1004-4051.2017.02.002
[2] 刘淑鹏, 张小伟. 基于区域协同减量化的矿山尾矿综合信息管理构想研究[J]. 矿产综合利用, 2021(4):17-20. doi: 10.3969/j.issn.1000-6532.2021.04.003
LIU S P, ZHANG X W. Research on comprehensive information management of mine tailings based on regional cooperative Reduction[J]. Multipurpose Utilization of Mineral Resources, 2021(4):17-20. doi: 10.3969/j.issn.1000-6532.2021.04.003
[3] 袁宗仪. 建立我国矿产资源综合开发利用评价体系[J]. 矿产综合利用, 1993(5):31-36.
YUAN Z Y. Establish an evaluation system for the comprehensive development and utilization of mineral resources in my country[J]. Multipurpose Utilization of Mineral Resources, 1993(5):31-36.
[4] 罗德江, 吴昊, 何苏, 等. 基于犹豫模糊TOPSIS 的绿色矿山多属性评价方法[J]. 矿产综合利用, 2021(4):41-49. doi: 10.3969/j.issn.1000-6532.2021.04.007
LUO D J, WU H, HE S, et al. Multiattribute evaluation method for green mines based on hesitant fuzzy TOPSIS[J]. Multipurpose Utilization of Mineral Resources, 2021(4):41-49. doi: 10.3969/j.issn.1000-6532.2021.04.007
[5] 吴安兵, 郭科, 罗德江. 滇东南地区矿产资源开发效率的模糊层次综合评价[J]. 国土资源科技管理, 2014, 31(5):63-70. doi: 10.3969/j.issn.1009-4210.2014.05.010
WU A B, GUO K, LUO D J. Evaluation of mineral resources development efficiencyof Southeast Yunnan Region based on fuzzy hierarchy comprehensive evaluation method[J]. Land and Resources Science and Technology Management, 2014, 31(5):63-70. doi: 10.3969/j.issn.1009-4210.2014.05.010
[6] 吴仲雄, 赵文彬. 广西优势矿产资源开发利用评价[J]. 中国矿业, 2006, 15(12):91-94. doi: 10.3969/j.issn.1004-4051.2006.12.028
WU Z X, ZHAO W B. Evaluation about the exploitation and utilization of Guangxi superior mineral resources[J]. China Mining Magazine, 2006, 15(12):91-94. doi: 10.3969/j.issn.1004-4051.2006.12.028
[7] 李学全, 李松仁, 尹蒂. 矿产资源综合开发利用评价的多目标决策灰色关联度方法[J]. 矿产综合利用, 1996(2):39-43.
LI X Q, LI S R, YIN D. Multi-objective decision-making grey relational degree method for the evaluation of comprehensive development and utilization of mineral resources[J]. Multipurpose Utilization of Mineral Resources, 1996(2):39-43.
[8] 薛盈杉, 张军军, 曾小波. 基于AHP- 熵权法的金属矿山开发利用水平综合评价研究[J]. 矿产综合利用, 2021(4):66-72. doi: 10.3969/j.issn.1000-6532.2021.04.010
XUE Y S, ZHANG J J, ZENG X B. Comprehensive evaluation of exploitation and utilization level of metal mines based on AHP and entropy weight method[J]. Multipurpose Utilization of Mineral Resources, 2021(4):66-72. doi: 10.3969/j.issn.1000-6532.2021.04.010
[9] 丁其光, 徐明. 矿产开发利用效率评价指标及方法初探[J]. 矿产综合利用, 2012(1):53-55. doi: 10.3969/j.issn.1000-6532.2012.01.015
DING Q G, XU M. Discussion of evaluation index framework for mineral development efficiency[J]. Multipurpose Utilization of Mineral Resources, 2012(1):53-55. doi: 10.3969/j.issn.1000-6532.2012.01.015
[10] 成刚. 数据包络分析方法与MaxDEA软件[M]. 北京: 知识产权出版社, 2014.
CHENG G. Data envelopment snalysis: method and MaxDEA software[M]. Beijing: Intellectual Property Press, 2014.
[11] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency ofdecision making units[J]. European Journal of Operational Re-search, 1979, 2(6):429-444.
[12] Malmquist S. Index numbers and indifference surfaces[J]. Trabajos De Estadistica, 1953, 4(2):209-242. doi: 10.1007/BF03006863
[13] Fare R, Grosskopf S, Lindgren B, et al. Productivity changes in Swedish pharamacies 1980-1989: Anon- parametric Malmquist approach[J]. Journal of Productivity Analysis, 1992, 3(1/2):85-101.
-