双碳背景下提钒弃渣制备集热涂层及其性能

侯静, 徐众, 吴恩辉, 李军, 蒋燕, 黄平. 双碳背景下提钒弃渣制备集热涂层及其性能[J]. 矿产综合利用, 2022, (2): 40-44. doi: 10.3969/j.issn.1000-6532.2022.02.007
引用本文: 侯静, 徐众, 吴恩辉, 李军, 蒋燕, 黄平. 双碳背景下提钒弃渣制备集热涂层及其性能[J]. 矿产综合利用, 2022, (2): 40-44. doi: 10.3969/j.issn.1000-6532.2022.02.007
Hou Jing, Xu Zhong, Wu Enhui, Li Jun, Jiang Yan, Huang Ping. Preparation and Properties of Heat-Collecting Coating from Vanadium Extraction Slag under Double Carbon Background[J]. Multipurpose Utilization of Mineral Resources, 2022, (2): 40-44. doi: 10.3969/j.issn.1000-6532.2022.02.007
Citation: Hou Jing, Xu Zhong, Wu Enhui, Li Jun, Jiang Yan, Huang Ping. Preparation and Properties of Heat-Collecting Coating from Vanadium Extraction Slag under Double Carbon Background[J]. Multipurpose Utilization of Mineral Resources, 2022, (2): 40-44. doi: 10.3969/j.issn.1000-6532.2022.02.007

双碳背景下提钒弃渣制备集热涂层及其性能

  • 基金项目: 国家自然科学基金资助项目(51174122/E0413)
详细信息
    作者简介: 侯静(1987-),男,助理研究员,主要从事钒钛磁铁矿资源综合利用研究
  • 中图分类号: TD989;X757

Preparation and Properties of Heat-Collecting Coating from Vanadium Extraction Slag under Double Carbon Background

  • 冶金矿产固废综合利用是构建绿色低碳循环经济体系的重要组成部分,本文以提钒弃渣为原料,经除铁、球磨、打浆、喷涂制备提钒弃渣太阳集热涂层,以水为介质,研究了不同倾角下的集热板的集热性能,结果表明在倾角为30°时,提钒弃渣涂层集热板的集热效率最好,可达到84.69%,同条件下仅比蓝钛膜涂层集热板集热效率低6.81%。

  • 加载中
  • 图 1  提钒弃渣的X射线衍射分析

    Figure 1. 

    图 2  提钒弃渣的SEM

    Figure 2. 

    图 3  空气温度变化情况

    Figure 3. 

    图 4  辐照强度变化情况

    Figure 4. 

    图 5  不同集热涂层集热板的集热效率

    Figure 5. 

    图 6  不同倾角下集热板的集热效率

    Figure 6. 

    表 1  提钒弃渣主要化学成分/%

    Table 1.  Main Chemical Components of vanadium extraction tailings

    Fe2O3TiO2SiO2MgOAl2O3CaOMnOCr2O3Na2OV2O5其他
    41.8412.9014.403.573.202.507.842.248.122.081.31
    下载: 导出CSV

    表 2  提钒弃渣的粒度组成/%

    Table 2.  Particle size composition of vanadium extraction tailings

    粒径范围/mm+0.154-0.154+0.074-0.074+0.038-0.038+0.023-0.023
    比例/%1.345.1210.3918.7464.41
    下载: 导出CSV

    表 3  除铁后的提钒弃渣主要化学成分/%

    Table 3.  Main chemical composition of vanadium extraction tailings after removing iron

    Fe2O3TiO2SiO2MgOAl2O3CaOMnOCr2O3Na2OV2O5其他
    3.2921.4322.465.855.244.1012.843.6713.303.514.31
    下载: 导出CSV

    表 4  提钒弃渣中氧化物的吸收率

    Table 4.  Absorption rate of oxide in vanadium extraction tailings

    成分Fe2O3TiO2V2O5MnOSiO2Al2O3CaOMgOCr2O3Na2O
    吸收率0.880.830.850.900.890.860.870.920.820.87
    下载: 导出CSV

    表 5  实验数据结果计算

    Table 5.  Calculation of experimental data results

    集热板水减少量/kg水升温的热量W1/kJ汽化的水的热量W2/kJ集热器吸收的太阳辐射能Qn/W集热器集热效率/%
    蓝钛膜0.8642.752136.242178.9984.46
    0.3 g/mL提钒弃渣0.59125.191465.561590.7561.66
    0.35 g/mL提钒弃渣0.6994.661713.961808.6270.11
    下载: 导出CSV

    表 6  不同倾角下提钒弃渣涂层集热板的集热性能

    Table 6.  Heat collection performance of vanadium extraction slag discarding coating heat collector plate at different dip angles

    倾角
    度数
    蓝钛膜0.3 g/mL
    提钒弃渣
    0.35 g/mL
    提钒弃渣
    辐照
    强度
    84.4661.6670.111289.9 w/m2
    10°85.9563.3572.581217.5 w/m2
    20°89.4567.8775.941257.4 w/m2
    30°91.5073.6884.691189.5 w/m2
    40°83.5465.8979.561276.8 w/m2
    下载: 导出CSV
  • [1]

    吕晓冯. 加快推动产业园区绿色低碳循环发展, 助力“双碳”目标早日实现[J]. 资源再生, 2021(11):1. doi: 10.3969/j.issn.1673-7776.2021.11.001

    LV X F. Accelerate the promotion of the green and low-carbon circular development of industrial parks to help achieve the "dual-carbon" goal as soon as possible[J]. Resource Recycling, 2021(11):1. doi: 10.3969/j.issn.1673-7776.2021.11.001

    [2]

    丁满堂. 含钒钢渣提钒利用研究[J]. 矿产综合利用, 2020(6):69-72.

    DING M T. Research on utilization of vanadium extraction from vanadium-bearing steel slag[J]. Multipurpose Utilization of Mineral Resources, 2020(6):69-72.

    [3]

    徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020(0):8-13.

    XU Z Z, LIANG J L, LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(0):8-13.

    [4]

    时亮, 魏昶, 樊刚, 等. 石煤提钒浸出渣制取建筑用砖的研究[J]. 矿产综合利用, 2009(6):35-37. doi: 10.3969/j.issn.1000-6532.2009.06.011

    SHI L, WEI C, FAN G, et al. Prepartion of building brick using the leaching residue of extracting vanadium from stone coal[J]. Multipurpose Utilization of Mineral Resources, 2009(6):35-37. doi: 10.3969/j.issn.1000-6532.2009.06.011

    [5]

    刘金生, 丁学勇, 薛向欣, 等. 提钒尾渣资源化综合利用的研究进展[J]. 钢铁, 2021, 56(7):152-160.

    LIU J S, DING X Y, XUE X X, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7):152-160.

    [6]

    徐众, 侯静, 李军, 等. 提钒尾渣对膨胀石墨/石蜡复合相变材料导热性能的影响[J]. 化工新型材料, 2021, 49(5):115-119.

    XU Z, HOU J, LI J, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021, 49(5):115-119.

    [7]

    修大鹏, 曹树梁, 许建华, 等. 黑瓷复合陶瓷太阳板集热系统的应用研究[J]. 山东科学, 2013, 26(2):72-77.

    XIU D P, CAO S L, XU J H, et al. Application of ceramic solar plate heating system[J]. Shandong Science, 2013, 26(2):72-77.

    [8]

    朴荣勋, 李轩, 李国伟, 等. 利用提钒尾渣和石墨制备高温显热蓄热材料的研究[J]. 钢铁钒钛, 2020, 41(6):52-59. doi: 10.7513/j.issn.1004-7638.2020.06.011

    PU R X, LI X, LI G W, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020, 41(6):52-59. doi: 10.7513/j.issn.1004-7638.2020.06.011

    [9]

    戴松元, 古丽米娜, 王景甫, 等. 太阳能转换原理与技术[M]. 北京: 中国水利水电出版社, 2018.

    DAI S Y, GU L M N, WANG J F, et al. The principle and technology of solar energy conversion [M]. Beijing: China Water Resources and Hydropower Press, 2018.

    [10]

    柴诚敬, 贾绍义. 化工原理(第三版)上册[M]. 天津: 高等教育出版社, 2017.

    CHAI C J, JIA S Y. Principles of chemical engineering (third edition) volume 1 [M]. Tianjin: Higher Education Press, 2017.

    [11]

    杨先亮, 刘新雨, 田胜楠, 等. 平板型太阳能集热器性能影响因素模拟分析[J]. 煤气与热力, 2016, 8(12):10-14.

    YANG X L, LIU X Y, TIAN S N, et al. Simulation and analysis of performance influence factors of flat plate solar collector[J]. Gas & Heat, 2016, 8(12):10-14.

    [12]

    陈洁. 平板型太阳能集热器热性能影响因素分析[J]. 中国农机化学报, 2014, 35(6):226-229.

    CHEN J. Influencing factors analysis of the thermal performance of flat plate solar collector[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6):226-229.

  • 加载中

(6)

(6)

计量
  • 文章访问数:  467
  • PDF下载数:  78
  • 施引文献:  0
出版历程
收稿日期:  2022-02-09
刊出日期:  2022-04-25

目录