赤泥中提取有价金属元素的研究进展

刘金瑞, 李慧, 梁精龙, 王乐. 赤泥中提取有价金属元素的研究进展[J]. 矿产综合利用, 2022, 43(3): 107-112. doi: 10.3969/j.issn.1000-6532.2022.03.019
引用本文: 刘金瑞, 李慧, 梁精龙, 王乐. 赤泥中提取有价金属元素的研究进展[J]. 矿产综合利用, 2022, 43(3): 107-112. doi: 10.3969/j.issn.1000-6532.2022.03.019
Liu Jinrui, Li Hui, Liang Jinglong, Wang Le. Progress on Extraction of Valuable Metals Elements from Red Mud[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 107-112. doi: 10.3969/j.issn.1000-6532.2022.03.019
Citation: Liu Jinrui, Li Hui, Liang Jinglong, Wang Le. Progress on Extraction of Valuable Metals Elements from Red Mud[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 107-112. doi: 10.3969/j.issn.1000-6532.2022.03.019

赤泥中提取有价金属元素的研究进展

  • 基金项目: 国家自然科学基金项目(51674120、51874141);河北省教育厅华北理工大学省属高校基本科研业务项目(JQN2019001)
详细信息
    作者简介: 刘金瑞(1995-),男,硕士研究生,主要研究方向为冶金物理化学,固体废弃物综合利用
    通讯作者: 王乐(1985-),男,博士,主要研究方向为资源综合利用
  • 中图分类号: TD951

Progress on Extraction of Valuable Metals Elements from Red Mud

More Information
  • 作为氧化铝生产过程中产生的强碱性废弃物,赤泥在我国具有年产量高,堆存量大,利用率低的现状,对资源环境威胁巨大。提取赤泥中大量含有的有价金属元素,对实现赤泥的资源化利用具有重大意义。本文简要叙述了赤泥的性质及组成。概述了赤泥中Fe的直接磁选法、还原-磁选法和湿法分离提取工艺;赤泥中Al的还原烧结法、钙化-碳酸化法、酸浸法和亚熔盐法提取工艺;赤泥中Ti的火法和湿法提取工艺;以及赤泥中Sc的火法-湿法联合法和湿法提取工艺,分析了各工艺的特点及存在的问题。认为目前实现工业化回收赤泥中有价金属的挑战在于赤泥组成成分复杂,导致有价金属回收的技术难度和处理成本较高;以及缺乏对多种元素系统性回收的工艺研究。提出开发更高效回收有价金属的技术,加强系统性提取赤泥中多种有价金属的相关研究,是未来实现赤泥资源化利用的关键。

  • 加载中
  • 表 1  三种赤泥的主要化学组成/%

    Table 1.  Main chemical composition of three kinds of red mud

    成分Fe2O3Al2O3SiO2TiO2Na2OCaO
    拜耳法赤泥[8]10.63~49.507.34~22.963.00~21.241.83~22.62.30~9.402.03~24.25
    烧结法赤泥[9]11.607.3427.995.360.5844.69
    联合法赤泥[10]6.669.1818.106.724.0038.09
    下载: 导出CSV
  • [1]

    朱晓波, 李望, 管学茂. 赤泥综合利用研究现状及分析[J]. 矿产综合利用, 2016(1):7-10. doi: 10.3969/j.issn.1000-6532.2016.01.002

    ZHU X B, LI W, GUAN X M. Research status and analysis of comprehensive utilization of mud[J]. Multipurpose Utilization of Mineral Resources, 2016(1):7-10. doi: 10.3969/j.issn.1000-6532.2016.01.002

    [2]

    POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1):33-45.

    [3]

    国家发展和改革委员会. 中国资源综合利用年度报告(2014)[J]. 再生资源与循环经济, 2014, 7(10):3-8. doi: 10.3969/j.issn.1674-0912.2014.10.003

    National Development and Reform Commission. Annual report on comprehensive utilization of resources in China (2014)[J]. Renewable Resources and Circular Economy, 2014, 7(10):3-8. doi: 10.3969/j.issn.1674-0912.2014.10.003

    [4]

    薛生国, 李玉冰, 郭颖. 氧化铝工业赤泥环境影响研究进展[J]. 中国科学院大学学报, 2017, 34(4):401-412. doi: 10.7523/j.issn.2095-6134.2017.04.001

    XUE S G, LI Y B, GUO Y. Research progress on environmental impact of red mud in alumina industry[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(4):401-412. doi: 10.7523/j.issn.2095-6134.2017.04.001

    [5]

    廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019(3):21-27.

    LIAO S Z, YANG J L, MA S J. Research progress on the comprehensive utilization of red mud[J]. Mineral Resources Conservation and Utilization, 2019(3):21-27.

    [6]

    LIU Y, NAIDU R. Hidden values in bauxite residue (red mud): recovery of metals[J]. Waste Management, 2014, 34(12):2662-2673. doi: 10.1016/j.wasman.2014.09.003

    [7]

    LIU Z, LI H. Metallurgical process for valuable elements recovery from red mud—A review[J]. Hydrometallurgy, 2015, 155:29-43. doi: 10.1016/j.hydromet.2015.03.018

    [8]

    REDDY P S, NARALA G R, SERJUN V Z, et al. Properties and assessment of applications of red mud (bauxite residue): current status and research needs[J]. Waste Biomass Valorization, 2020:1-33.

    [9]

    CHEN S, FANG L, ZHU Q, et al. Bromate removal by Fe(II)–akaganeite (β-FeOOH) modified red mud granule material[J]. Rsc Advances, 2016, 6(34):28257-28262. doi: 10.1039/C6RA01206J

    [10]

    南相莉, 张廷安, 刘燕, 等. 我国主要赤泥种类及其对环境的影响[J]. 过程工程学报, 2009, 9(s1):459-464.

    NAN X L, ZHANG T A, LIU Y, et al. Main types of red mud in my country and their impact on the environment[J]. The Chinese Journal of Process Engineering, 2009, 9(s1):459-464.

    [11]

    MUKIZA E, ZHANG L, LIU X, et al. Utilization of red mud in road base and subgrade materials: A review[J]. Resources Conservation Recycling, 2019, 141:187-199. doi: 10.1016/j.resconrec.2018.10.031

    [12]

    竹涛, 王若男, 金鑫睿, 等. 以废治废——铝厂固废赤泥治理工业废气二氧化硫的应用研究[J]. 有色金属工程, 2019, 9(7):109-114. doi: 10.3969/j.issn.2095-1744.2019.07.017

    ZHU T, WANG R N, JIN X R, et al. Treating waste with waste——application research on treatment of industrial waste gas sulfur dioxide with solid waste red mud in aluminumplants[J]. Nonferrous Metal Engineering, 2019, 9(7):109-114. doi: 10.3969/j.issn.2095-1744.2019.07.017

    [13]

    KLAUBER C, GRÄFE M, POWER G. Bauxite residue issues: II. options for residue utilization[J]. Hydrometallurgy, 2011, 108(1-2):11-32. doi: 10.1016/j.hydromet.2011.02.007

    [14]

    徐淑安, 邵延海, 熊述清, 等. 疏水团聚-磁种法回收赤泥中微细粒铁矿试验[J]. 矿产综合利用, 2015(6):67-71. doi: 10.3969/j.issn.1000-6532.2015.06.017

    XU S A, SHAO Y H, XIONG S Q, et al. Hydrophobic agglomeration-magnetic seed method to recover fine-grained iron ore from red mud[J]. Multipurpose Utilization of Mineral Resources, 2015(6):67-71. doi: 10.3969/j.issn.1000-6532.2015.06.017

    [15]

    邓琦, 张冬梅. 永磁法赤泥选铁的试验研究[J]. 陶瓷学报, 2012, 33(3):365-371. doi: 10.3969/j.issn.1000-2278.2012.03.021

    DENG Q, ZHANG D M. Experimental research on iron separation from red mud by permanent magnet method[J]. Acta Ceramica Sinica, 2012, 33(3):365-371. doi: 10.3969/j.issn.1000-2278.2012.03.021

    [16]

    崔石岩, 张明慧, 孙永峰, 等. 高炉灰与赤泥共还原—磁选回收铁试验研究[J]. 金属矿山, 2020(3):102-107.

    CUI S Y, ZHANG M H, SUN Y F, et al. Co-reduction of blast furnace ash and red mud-experimental research on iron recovery by magnetic separation[J]. Metal Mine, 2020(3):102-107.

    [17]

    LI G, LIU M, RAO M, et al. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts[J]. Journal of Hazardous Materials, 2014, 280:774-780. doi: 10.1016/j.jhazmat.2014.09.005

    [18]

    GAO F, ZHANG J, DENG X, et al. Comprehensive recovery of iron and aluminum from ordinary Bayer red mud by reductive sintering–magnetic separation–digesting process[J]. Jom, 2019, 71:2936-2943. doi: 10.1007/s11837-018-3311-4

    [19]

    DAS D, PRAMANIK K. A study on chemical leaching of iron from red mud using sulphuric acid[J]. Research Journal of Chemistry Environment, 2013, 17(7):50-56.

    [20]

    PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99:8-18. doi: 10.1016/j.mineng.2016.09.012

    [21]

    HUANG Y, HAN G, LIU J, et al. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics[J]. Journal of Hazardous Materials, 2016, 301:46-55. doi: 10.1016/j.jhazmat.2015.08.035

    [22]

    XIAO-BIN L I, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5):1342-1347. doi: 10.1016/S1003-6326(08)60447-1

    [23]

    王璐, 郝彦忠, 郝增发. 赤泥中有价金属提取与综合利用进展[J]. 中国有色金属学报, 2018(8):1697-1710.

    WANG L, HAO Y Z, HAO Z F. Progress in extraction and comprehensive utilization of valuable metals in red mud[J]. The Chinese Journal of Nonferrous Metals, 2018(8):1697-1710.

    [24]

    张廷安, 吕国志, 刘燕, 等. 基于钙化-碳化转型溶出中低品位铝土矿中氧化铝的方法: 中国, CN102757073B[P/OL]. 2014-06-18

    ZHANG T A, LV G Z, LIU Y, et al. Method for dissolving alumina from low- and medium-grade bauxite based on calcification-carbonization transformation: China, CN102757073B[P/OL]. 2014-06-18

    [25]

    XIE L, ZHANG T, LV G, et al. Direct calcification–carbonation method for processing of Bayer process red mud[J]. Russian Journal of Non-ferrous Metals, 2018, 59(2):142-147. doi: 10.3103/S1067821218020050

    [26]

    LI R, ZHANG T, LIU Y, et al. Calcification-carbonation method for red mud processing[J]. Journal of Hazardous Materials, 2016, 316:94-101. doi: 10.1016/j.jhazmat.2016.04.072

    [27]

    鲁桂林, 迟松江, 毕诗文. 赤泥中氧化铝和氧化铁的浸出[J]. 材料与冶金学报, 2010(1):31-34+67. doi: 10.3969/j.issn.1671-6620.2010.01.008

    LU G L, CHI S J, BI S W. Leaching of alumina and iron oxide from red mud[J]. Journal of Materials and Metallurgy, 2010(1):31-34+67. doi: 10.3969/j.issn.1671-6620.2010.01.008

    [28]

    PASCALE V, D T R, CHRISTIAN A J, et al. Chemical and biological leaching of aluminum from red mud[J]. Environmental Science Technology, 1994, 28(1):26. doi: 10.1021/es00050a005

    [29]

    孙旺, 郑诗礼, 张亦飞, 等. NaOH亚熔盐法处理拜尔法赤泥的铝硅行为[J]. 过程工程学报, 2008, 8(6):1148-1152. doi: 10.3321/j.issn:1009-606X.2008.06.020

    SUN W, ZHENG S L, ZHANG Y F, et al. Al-Si behavior of Bayer process red mud treated by NaOH sub-molten salt method[J]. The Chinese Journal of Process Engineering, 2008, 8(6):1148-1152. doi: 10.3321/j.issn:1009-606X.2008.06.020

    [30]

    常军, 邵延海, 李硕, 等. 赤泥中有价金属元素综合回收研究现状及进展[J]. 矿冶, 2017, 26(3):59-63. doi: 10.3969/j.issn.1005-7854.2017.03.013

    CHANG J, SHAO Y H, LI S, et al. Research status and progress of comprehensive recovery of valuable metal elements in red mud[J]. Mining and Metallurgy, 2017, 26(3):59-63. doi: 10.3969/j.issn.1005-7854.2017.03.013

    [31]

    雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019(3):15-20.

    LEI Q Y, ZHOU K G, HE D W, et al. Research progress on the recovery of scandium and titanium in red mud[J]. Mineral Resources Conservation and Utilization, 2019(3):15-20.

    [32]

    PIGA L, POCHETTI F, STOPPA L. Recovering metals from red mud generated during alumina production[J]. Jom, 1993, 45(11):54-59. doi: 10.1007/BF03222490

    [33]

    朱晓波, 管学茂, 李望. 赤泥酸浸提钛实验研究[J]. 稀有金属与硬质合金, 2015, 43(2):11-13+49.

    ZHU X B, GUAN X M, LI W. Experimental study on the acid leaching of titanium from red mud[J]. Rare Metals and Cemented Carbides, 2015, 43(2):11-13+49.

    [34]

    张江娟. 从赤泥中回收二氧化钛的初步研究[J]. 中国资源综合利用, 2003(1):28-30. doi: 10.3969/j.issn.1008-9500.2003.01.020

    ZHANG J J. A preliminary study on the recovery of titanium dioxide from red mud[J]. China Resources Comprehensive Utilization, 2003(1):28-30. doi: 10.3969/j.issn.1008-9500.2003.01.020

    [35]

    VIND J, MALFLIET A, BONOMI C, et al. Modes of occurrences of scandium in Greek bauxite and bauxite residue[J]. Minerals Engineering, 2018, 123:35-48. doi: 10.1016/j.mineng.2018.04.025

    [36]

    王爱平, 汪胜东, 靳冉公. 赤泥提钪技术研究进展[J]. 中国资源综合利用, 2014(9):40-42. doi: 10.3969/j.issn.1008-9500.2014.09.025

    WANG A P, WANG S D, JIN R G. Research progress in technology of extracting scandium from red mud[J]. China Resources Comprehensive Utilization, 2014(9):40-42. doi: 10.3969/j.issn.1008-9500.2014.09.025

    [37]

    ZHOU K, TENG C, ZHANG X, et al. Enhanced selective leaching of scandium from red mud[J]. Hydrometallurgy, 2018, 182:57-63. doi: 10.1016/j.hydromet.2018.10.011

    [38]

    ZHU X, LI W, XING B, et al. Extraction of scandium from red mud by acid leaching with CaF2 and solvent extraction with P507[J]. Journal of Rare Earths, 2020, 38(9):1003-1008. doi: 10.1016/j.jre.2019.12.001

    [39]

    BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and major metals from bauxite residue (red mud) by alkali roasting, smelting, and leaching[J]. Journal of Sustainable Metallurgy, 2017, 3(2):393-404. doi: 10.1007/s40831-016-0103-3

  • 加载中

(1)

计量
  • 文章访问数:  2452
  • PDF下载数:  149
  • 施引文献:  0
出版历程
收稿日期:  2020-01-03
刊出日期:  2022-06-25

目录