Determination of Vanadium, Iron, Manganese and Phosphorus Contents in Ferrovanadium Slag by Alkali Fusion-Inductively Coupled Plasma Atomic Emission Spectrometry
-
摘要:
采用碳酸钠-硼酸高温熔融样品,经盐酸浸取熔块,选择钒310.230 nm、铁259.940 nm、锰257.610 nm和磷213.618 nm为分析谱线,选用基体匹配法来消除基体效应的影响,建立了碱熔-电感耦合等离子体原子发射光谱法测定钒铁炉渣中钒铁锰磷的方法。结果表明,各元素校准曲线的线性相关系数均不小于0.999;方法中各元素检出限分别为:钒0.0076 μg/mL、铁0.0093 μg/mL、锰0.0065 μg/mL、磷0.0051 μg/mL。按照实验方法测定两个钒铁炉渣标准样品,测定结果的相对标准偏差(RSD,n=8)不大于3.9%,测定值与认定值基本一致。
Abstract:The ferrovanadium slag sample was fused with sodium carbonate-boric acid at high temperature, then acidified with hydrochloric. Vanadium 310.230 nm, iron 259.940 nm, manganese 257.610 nm and phosphorus 213.618 nm were selected as the analytical lines. The matrix matching method was used to eliminate the influence of matrix effect, the determination method of vanadium, iron, manganese and phosphorus contents in ferrovanadium slag by alkali fusion-inductively coupled plasma atomic emission spectrometry was established. The results showed that the linear correlation coefficients of calibration curves were all higher than 0.999, the limit of detection for vanadium, iron, manganese and phosphorus was 0.0076 μg/mL, 0.0093 μg/mL, 0.0065 μg/mL and 0.0051 μg/mL, respectively. Two ferrovanadium slag certified reference materials were determined according to the experimental method, the relative standard deviations(RSD, n=8) were less than 3.9 %.
-
-
表 1 标准溶液系列中各元素质量浓度/(mg∙L-1)
Table 1. Mass concentration of each element in standard solution series
元素 S0 S1 S2 S3 S4 S5 钒 0 5.0 10 15 20 25 铁 0 2.0 4.0 6.0 8.0 10 锰 0 2.0 4.0 6.0 8.0 10 磷 0 0.04 0.08 0.12 0.16 0.20 表 2 校准曲线相关系数、检出限和测定下限
Table 2. Calibration curve correlation coefficients, detection limits and limit of determination
元素 波长
/nm相关系数R2 检出限
/(μg·mL-1)测定下限
/(μg·mL-1)测定范围
/%钒 310.230 0.9995 0.0076 0.025 0.002~2.50 铁 259.940 0.9997 0.0093 0.031 0.003~1.00 锰 257.610 0.9998 0.0065 0.022 0.002~1.00 磷 213.618 0.9996 0.0051 0.017 0.002~0.20 表 3 国家标准物质测定结果
Table 3. Determination results of CRMs
元素 YSBC 19823-2017 YSBC 19824-2017 测定值% 认定值/% 相对标准偏
差RSD(n=8) /%相对误差RE /% 测定值/% 认定值/% 相对标准偏
差RSD(n=8) /%相对误差RE /% 钒 1.76 1.78±0.03 1.6 1.1 1.93 1.91±0.04 1.0 1.0 铁 0.691 0.695±0.017 2.7 0.6 0.445 0.442±0.016 1.8 1.7 锰 0.063 0.062±0.002 2.1 1.6 0.047 0.046±0.002 2.4 2.2 磷 0.014 0.013±0.001 3.2 7.7 0.006 0.006±0.001 3.9 0.0 -
[1] 丁满堂. 含钒钢渣提钒利用研究[J]. 矿产综合利用, 2020(6):69-72.
DING M T. Research on utilization of vanadium extraction from vanadium-bearing steel slag[J]. Multipurpose Utilization of Mineral Resources, 2020(6):69-72.
[2] 田春秋, 邵坤. 微波消解-石墨炉原子吸收光谱法测定钛白粉中钒[J]. 冶金分析, 2014, 34(12):48-51.
TIAN C Q, SHAO K. Determination of vanadium in titanium dioxide by graphite furnace atomic absorption spectrometry with microwave digestion[J]. Metallurgical Analysis, 2014, 34(12):48-51.
[3] 陈桂英, 米泽宇. X射线荧光光谱法测定钒铁冶炼炉渣中的主要成分[J]. 光谱实验室, 2010, 27(1):296-299. doi: 10.3969/j.issn.1004-8138.2010.01.070
CHEN G Y, MI Z Y. Determination of major components in ferrovanadium slag by XRF[J]. Chinese Journal of Spectroscopy Laboratory, 2010, 27(1):296-299. doi: 10.3969/j.issn.1004-8138.2010.01.070
[4] 黄敏峰. 用EDTA络合滴定法测定锰矿石中全铁[J]. 中国锰业, 2016, 34(5):106-108.
HUANG M F. Determination of Mn ore in full iron by EDTA complexometric titration[J]. China's Manganese Industry, 2016, 34(5):106-108.
[5] 苏洋. 邻菲罗啉光度法测定钒铝合金中铁[J]. 冶金分析, 2019, 39(2):77-81.
SU Y. Determination of iron in vanadium-aluminum alloy by phenanthroline spectrophotometry[J]. Metallurgical Analysis, 2019, 39(2):77-81.
[6] 仵利萍, 曾英, 刘卫, 等. 熔融制样-X射线荧光光谱法测定高钛渣主次量元素[J]. 矿产综合利用, 2017(1):81-84. doi: 10.3969/j.issn.1000-6532.2017.01.018
WU L P, ZENG Y, LIU W, et al. Determination of major and minor elements in high titanium slag by X-ray fluorescence spectrometry with samples of smelting process[J]. Multipurpose Utilization of Mineral Resources, 2017(1):81-84. doi: 10.3969/j.issn.1000-6532.2017.01.018
[7] 窦怀智, 丁菊香, 王超颖, 等. 火焰原子吸收光谱法测定镍基体料炉渣中锰[J]. 冶金分析, 2015, 35(12):32-35.
DOU H Z, DING J X, WANG C Y, et al. Determination of manganese in slag of nickel matrix material by flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2015, 35(12):32-35.
[8] 陈立雷, 张培玉. 高碘酸钾分光光度法测定电解锰渣中的Mn(Ⅱ)[J]. 环境工程学报, 2013, 7(9):3613-3618.
CHEN L L, ZHANG P Y. Detection Mn(Ⅱ) in electrolytic manganese residues by potassium periodate spectrophotometric method[J]. Chinese Journal of Environmental Engineering, 2013, 7(9):3613-3618.
[9] 王鹏辉, 金留安. 钼蓝分光光度法联合测定铁矿石中磷和二氧化硅[J]. 冶金分析, 2019, 39(3):58-64.
WANG P H, JIN L A. Combined determination of phosphorus and silicon dioxide in iron ore by molybdenum blue spectrophotometry[J]. Metallurgical Analysis, 2019, 39(3):58-64.
[10] 施宗友, 王勇, 刘林. 火焰原子吸收光谱法测定钢铁中磷的含量[J]. 理化检验(化学分册), 2016, 52(10):1214-1217.
SHI Z Y, WANG Y, LIU L. FAAS determination of phosphorus in steel[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2016, 52(10):1214-1217.
[11] 霍红英. 微波消解-电感耦合等离子体原子发射光谱法测定钒铁中7种杂质元素[J]. 冶金分析, 2018, 38(2):65-70.
HUO H Y. Determination of 7 impurity elements in ferrovanadium alloy by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Metallurgical Analysis, 2018, 38(2):65-70.
[12] 邓传东, 李洁, 孙琳, 等. 电感耦合等离子体发射光谱法同时测定海绵铪中的18种杂质元素[J]. 分析科学学报, 2020, 36(1):149-153.
DENG C D, LI J, SUN L, et al. Simultaneous determination of 18 impurity elements in hafnium sponge by inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Science, 2020, 36(1):149-153.
[13] 郑向明, 叶玲玲, 江荆, 等. 微波消解-电感耦合等离子体原子发射光谱法测定含碳化铬锌物料中铅铜铁镉铬砷[J]. 冶金分析, 2019, 39(5):49-56.
ZHENG X M, YE L L, JIANG J, et al. Determination of lead, copper, iron, cadmium, chromium and arsenic in zinc material containing chromium carbide by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2019, 39(5):49-56.
[14] 成勇. 电感耦合等离子体原子发射光谱法测定高钛型钒渣中铬、钴、镍、镓、钪、锆的含量[J]. 理化检验(化学分册), 2018, 54(1):49-54.
CHENG Y. ICP-AES determination of chromium, cobalt, nickel, gallium, scandium and zirconium in the high titanium vanadium slag[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2018, 54(1):49-54.
[15] 冯勇, 吴丽琨, 黄立伟. 酸溶分解试样、酸介质电感耦合等离子体发射光谱测定岩石矿物中的钨[J]. 矿产综合利用, 2012(6):60-62.
FENG Y, WU L K, HUANG L W. Determination of Tungsten in the Rock Minerals by Decomposition of Samples Using Acid Dissolution and Inductively Coupled Plasma Mass Spectrometry Using Acidic Medium[J]. Multipurpose Utilization of Mineral Resources, 2012(6):60-62.
[16] 王贵超. 电感耦合等离子体原子发射光谱法测定铝钪锆合金中的钪锆铁钙铜锰镍铬含量[J]. 硬质合金, 2019, 36(6):453-459.
WANG G C. Determination of Sc、Zr、Fe、Ca、Cu、Mn、Ni and Cr in aluminum-scandium-zirconium alloy by ICP-OES[J]. Cemented Carbide, 2019, 36(6):453-459.
[17] 李晓云. 电感耦合等离子体原子发射光谱法测定钒铁中硅、锰、磷和铝的含量[J]. 理化检验(化学分册), 2017, 53(12):1460-1463.
LI X Y. Determination of silicon, manganese, phosphorus and aluminum in ferrovanadium by inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2017, 53(12):1460-1463.
[18] 关宁昕, 张桂芬, 曹昆武, 等. 电感耦合等离子体原子发射光谱法测定铝青铜中7种元素[J]. 冶金分析, 2016, 36(3):64-68.
GUAN N X, ZHANG G F, CAO K W, et al. Determination of seven elements in aluminum bronze by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(3):64-68.
-