Research Status of Granulation Technology Process of Fine-Grade Rich Titanium Material
-
摘要:
钛资源经过富集提钛、除杂处理,获得满足沸腾氯化法对炉料要求的富钛料。但细粒富钛料占比多,难以满足沸腾氯化法对炉料粒度的要求。细粒富钛料在沸腾氯化过程中易导致沟流、节涌,细颗粒逸出量大等问题,造成沸腾氯化率低、炉料反应不充分,且严重影响沸腾氯化工艺的顺行。因此,对细粒级富钛料进行制粒处理,使其满足原料粒度要求,是制备出优质沸腾氯化炉料的关键问题之一。本文详细总结了细粒级富钛料颗粒制粒的方法及所需粘结剂,分析了目前细粒富钛料制粒的方法及采用的粘结剂中存在的问题,并指出采用固结温度低的无机或有机-无机复合粘结剂,对细粒级富钛料进行流态化制粒是有利于实现工业化的发展方向。
Abstract:Titanium resources are enriched to extract titanium and remove impurities to obtain titanium-rich materials that meet the requirements of boiling chlorination furnace charge. However, the fine-grade rich titanium materials make up a large part, and it cannot meet the particle size requirements of boiling chlorination furnace charge. The fine-grade rich titanium materials tend to cause problems such as channel flow, slugging and escapes from the furnace during boiling chlorination process, resulting in low boiling chlorination rate, inadequate reaction of the charge, and severely affects the stable running of boiling chlorination process. Therefore, granulating the fine-grade rich titanium materials to meet the requirements of the raw material particle size is one of the key issues in preparing high-quality boiling chlorinated furnace charge. This paper summarizes the granulation method of fine-grade rich titanium materials particles and the required binders in detail, analyzes the problems in the current granulation method of fine-grade rich titanium materials and the binders used, and points out that the use of inorganic or organic-inorganic composite binders with low consolidation temperature to fluidize granulation of fine-grained titanium-rich materials is beneficial to the development direction of industrialization.
-
Key words:
- Fine-grade rich titanium material /
- Boiling chlorination /
- Granulation method /
- Binder
-
-
[1] M H El-Sadek, O A Fouad, M B Morsi, et al. Controlling conditions of fluidized bed chlorination of upgraded titania slag[J]. Transactions of the Indian Institute of Metals, 2019, 72(2).
[2] NIU L P, NI P Y, ZHANG T G, et al. Mechanism of fluidized chlorination reaction of Kenya natural rutile ore[J]. Rare Metals, 2014, 33(4):485-492. doi: 10.1007/s12598-014-0281-8
[3] 刘娟. 攀枝花钛资源制备沸腾氯化用富钛原料研究进展[J]. 中国有色冶金, 2018, 47(6):49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014
LIU J. Development of study on preparation of Ti-rich raw material for boiling chlorination from Panzhihua titanium resources[J]. China Nonferrous Metallurgy, 2018, 47(6):49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014
[4] 李文光, 张瑛. 我国金红石矿产资源特点及开发利用[J]. 中国化工, 1997(4):19-20.
LI W G, ZHANG Y. Characteristics and development of rutile mineral resources in China[J]. China Chemical Industry, 1997(4):19-20.
[5] 王雅静, 张宗华, 高利坤. 某难选金红石矿选矿试验研究[J]. 矿产综合利用, 2008(1):7-10. doi: 10.3969/j.issn.1000-6532.2008.01.002
WANG Y J, ZHANG Z H, GAO L K. Experiment research on the mineral processing technology for a refractory rutile ore[J]. Multipurpose Utilization of Mineral Resources, 2008(1):7-10. doi: 10.3969/j.issn.1000-6532.2008.01.002
[6] 岳铁兵, 曹进成, 魏德州, 等. 磨矿分级流程对细粒金红石矿选别的影响[J]. 化工矿物与加工, 2004(8): 15-17.
YUE T B, CAO J C, WEI D Z, et al. A influence of grinding and classification flowsheet on mineral processing of fine rutile ore[J]. Industrial Minerals and Processing. 2004(8): 15-17.
[7] 叶恩东. 攀枝花钛精矿制备高品质富钛料工艺分析[J]. 化工生产与技术, 2013, 20(4): 38-40.
YE E D. Process analysis of the high quality titanium rich material prepared by Panzhihua titanium concentrate[J]. Chemical Production and Technology. 2013, 20(4): 38-40.
[8] 陈辉. 沸腾氯化法生产四氯化钛的设备及工艺改进[J]. 湖南有色金属, 2016, 32(2): 36-39.
CHEN H. Improvement of equipment and process for producing titanium chloride four boiling chlorination[J]. Hunan Nonferrous Metals. 2016, 32(2): 36-39.
[9] WEN C Y, YU Y H. Mechanics of fluidization[J]. Chem. engng Prog. symp. ser, 1966, 62:100-111.
[10] 贺友多. 圆盘造球机的造球运动分析[J]. 烧结球团, 1981(5): 1-7.
HE Y D. Analysis of the pelleting movement of the disk granulator[J]. Sintering and Pelletizing. 1981(5): 1-7.
[11] Botha Pieter Adriaan (ZA); Bessinger Deon (ZA); Dippenaar Benjamin Alexander (ZA). Agglomeration of titania[P]. US: 7, 931, 886 B2. 2011-04-26.
[12] Gueguin Michel. Titanium slag-coke granules suitable for fluid bed chlorination[P]. US: 4, 187, 11 7. 1980-04-05.
[13] CHEN X L, ZHOU X W, GAN M, et al. Study on the fluidized bed granulation of fine-grained rutile concentrate[J]. Powder Technology, 2017(315):53-59.
[14] 傅备德, 潘志明, 张万琦. V型混合机的工作原理与应用[J]. 化学世界, 1965(3):134-137. doi: 10.19500/j.cnki.0367-6358.1965.03.020
FU B D, PAN Z M, ZHANG W Q. Working principle and application of V-mixer[J]. Chemical World, 1965(3):134-137. doi: 10.19500/j.cnki.0367-6358.1965.03.020
[15] Hall John Sydney (Au), Carey Ken George (Au), Hollitt Michael John (Au). Sintered high titanium agglomerates[P]. US: 6149712. 2000-11-21.
[16] 李进卫. 无机胶粘剂性能、组成、制备和应用分析[J]. 玻璃钢, 2018(2):6-13.
LI J W. Inorganic adhesive properties, composition, preparation and application analysis[J]. Fiber Reinforced Plastics, 2018(2):6-13.
[17] 蒋训雄, 蒋伟, 汪胜东等. 细粒级富钛料造粒方法[P]. 中国: 201610712820.2. 2017-01-11.
JIANG X X, JIANG W, WANG S D, et al. Granulation method for fine-fraction titanium-rich material[P]. CN: 106319246. 2017-01-11.
[18] 叶恩东, 缪辉俊, 程晓哲等. 细粒级人造金红石造粒结合剂及其使用方法[P]. 中国: 201510736993.3. 2016-01-27.
YE E D, MIAO H J, CHEN X Z, et al. Fine-fraction artificial rutile granulation binding agent and use method thereof[P]. CN: 105271390. 2016-01-27.
[19] 陈祝春, 陆平, 王建鑫等. 一种细粒级钛原料的团粒方法[P]. 中国: 201210191764.4. 2012-11-14.
CHEN Z C, LU P, WANG J X, et al. Method for aggregating fine fraction titanium raw materials[P]. CN: 102776365A. 2012-11-14.
[20] 陈树忠, 英明. 一种钛焦颗粒的造粒制备方法[P]. 中国: 201410254963.4. 2014-09-24.
CHEN S Z, YING M. Preparation method for making titanium coke granules[P]. CN: CN104058450A. 2014-09-24.
-
计量
- 文章访问数: 1260
- PDF下载数: 117
- 施引文献: 0