Soil Environmental Quality Assessment around the Undeveloped Ion Adsorption Type Rare Earth Ore in Southern Jiangxi
-
摘要:
为摸清未开发离子型稀土矿区土壤环境质量,使后续开采过程中的监测更有目的性,以赣南某矿区为研究区域,采用改进内梅罗土壤肥力综合法评价了研究区域土壤肥力,采用单因子指数法和内梅罗污染指数法评价了其重金属污染状况。结果显示:研究区域各单项土壤肥力水平依次为全磷<全氮<有机质<速效磷<碱解氮<速效钾<全钾,整体处于低水平、贫瘠状态,优于赣南某采矿废弃区;各项重金属污染水平依次为As<Ni<Cr<Cu<Zn<Cd<Pb,均处于安全区范围内,与江西省土壤背景值具有可比性,优于赣南某采矿废弃区。研究揭示该地区土壤肥力低下,不存在重金属污染,在后期开发利用中,应注意对土壤中碱解氮、全钾、速效钾、Pb、Cd和As的监测。
Abstract:In order to find out the soil quality of the undeveloped ion adsorption type rare earth ore, and more purposeful monitoring in the mining process, a mining area in Ningdu, southern Jiangxi was taken as the research area, and the improved Nemerow soil fertility comprehensive method was used to evaluate the soil fertility of the research area, the single factor index method and Nemerow pollution index method were used to evaluate the heavy metal pollution status. Results show that: the soil fertility levels of each single item in the study area are is total phosphorus < total nitrogen < organic matter < available phosphorus < alkaline hydrolyzable nitrogen < available potassium < total potassium, and the overall level is low and barren, which is better than that of a mining waste area; The pollution levels of heavy metals are As<Ni<Cr<Cu<Zn<Cd<Pb, which are all within the safe area and comparable with the soil background value in Jiangxi Province, and better than a mining waste area. The research revealed that the soil fertility in this area is low and there is no heavy metal pollution. In the later development and utilization, attention should be paid to the monitoring of alkaline hydrolyzed nitrogen, total potassium, available potassium, Pb, Cd and As in the soil.
-
-
表 1 土壤肥力参评因子标准化处理方法
Table 1. Standardized treatment methods of soil fertility participating factors
分级标准 标准化处理方法 Ⅳ(差) ci≤xa,pi=ci/xa,pi≤1 Ⅲ(中等) xa≤ci≤xc ,pi=1+(ci-xa)/(xc-xa),1≤pi≤2 Ⅱ(较好) xc≤ci≤xp ,pi=2+(ci-xa)/(xc-xa),2≤pi≤3 Ⅰ(好) ci>xp ,pi=3 注:ci为土壤中某项指标的实测数据。 表 2 土壤肥力参评指标分级标准值
Table 2. Grading standard values of soil fertility participating factors
参评指标 xa xc xp AN/(mg·kg-1)) 60 120 180 AP/(mg·kg-1) 5 10 20 AK/( mg·kg-1) 50 100 200 TN/( g·kg-1) 0.75 1.50 2.00 TP/( g·kg-1) 0.75 1.50 2.00 TK/( g·kg-1) 10 20 30 SOM/ g·kg-1) 10 20 30 表 3 不同重金属的农用地土壤污染风险筛选值/(mg·kg-1)
Table 3. Screening values of soil pollution risk in agricultural land for different heavy metals
pH值 Cu Pb Zn Cr Ni Cd As ≤5.5 50 80 200 150 60 0.3 40 表 4 全国第二次土壤普查养分分级标准
Table 4. The nutrient classification standard of the second national soil census
一级
(极高)二级
(较高)三级
(中等)四级
(较缺乏)五级
(缺乏)六级
(极缺乏)AN/(mg·kg-1) >150 150~120 120~90 90~60 60~30 <30 AP/(mg·kg-1) >40 40~20 20~10 10~5 5~3 <3 AK/(mg·kg-1) >200 200~150 150~100 100~50 50~30 <30 TN/(g·kg-1) >2 2~1.5 1.5~1 1~0.75 0.75~0.5 <0.5 TP/(g·kg-1) >1 1~0.8 0.8~0.6 0.6~0.4 0.4~0.2 <0.2 TK/(g·kg-1) >25 25~20 20~15 15~10 10~5 <5 SOM/(g·kg-1) >40 40~30 30~20 20~10 10~6 <6 表 5 研究区域土壤中养分含量分析
Table 5. Analysis of nutrient content in soil in the survey area
AN/
(mg·kg-1)AP/
(mg·kg-1)AK/ (mg·kg-1) TN/
(g·kg-1)TP/
(g·kg-1)TK/
(g·kg-1)SOM/
(g·kg-1)平均值 140.00 4.71 150.00 0.63 0.23 26.67 9.46 最大值 310.00 7.59 300.00 1.80 0.76 37.1 28.70 最小值 42.50 2.99 80.40 0.10 0.091 14.5 0.87 背景值 132.03 4.41 0.014 0.063 0.22 25.53 10.68 一级(%) 32 0 12 0 0 72 0 二级(%) 22 0 30 2 0 26 0 三级(%) 32 0 50 10 4 2 12 四级(%) 12 26 8 18 4 0 26 五级(%) 2 72 0 20 36 0 18 六级(%) 0 2 0 50 56 0 44 表 6 土壤综合肥力等级划分(NY/T 1749-2009)
Table 6. Classification of soil comprehensive fertility grades (NY/T 1749-2009)
等级划分 土壤肥力指数 评价描述 Ⅰ(好) pz≥1.7 土壤肥力处于高水平、肥沃或很肥沃,不缺肥,作物产量较高,施肥增产的边际效应降低。 Ⅱ(一般) 0.9≤pz≤1.7 土壤肥力处于一般水平、尚可,个别指标可能显示缺乏,作物产量随施肥量提高较明显。 Ⅲ(差) pz<0.9 土壤肥力处于低水平、贫瘠,作物处于缺肥状态,个别指标严重缺乏或不宜,施肥增产显著。 表 7 研究区域土壤中重金属含量统计
Table 7. Statistical table of heavy metal content in soil in the study area
元素 平均值/
(g·t-1)最大值
/
(g·t-1)最小值
/
(g·t-1)江西省土壤背景
值/(g·t-1)Cu 10.66 35.3 2.45 17.7 Pb 37.61 164 8.21 28.5 Zn 65.71 123 29.9 63.7 Cr 22.02 73.2 8.3 39.4 Ni 8.88 29.6 2.72 15.8 Cd 0.13 1.4 0.041 0.0696 As 3.59 30 0.26 11.3 注:出自《中国土壤元素背景值》 表 8 土壤重金属污染评价分级标准
Table 8. Classification criteria for soil heavy metal pollution evaluation
等级划分 综合污染指数 污染等级 1 P综≤0.7 安全 2 0.7<P综≤1 警戒线 3 1<P综≤2 轻度污染 4 2<P综≤3 中度污染 5 P综>3 重度污染 -
[1] 周贺鹏, 胡洁. 离子型稀土矿化学溶浸影响因素及其调控[J]. 矿产综合利用, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032
ZHOU H P, HU J. Influencing factors and control of chemical leaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032
[2] 张博, 宁阳昆, 曹飞, 等. 世界稀土资源现状[J]. 矿产综合利用, 2018(4):7-12.
ZHANG B, NING Y K, CAO F, et al. Current situation of worldwide rare earth resources[J]. Multipurpose Utilization of Mineral Resources, 2018(4):7-12.
[3] 魏娟萍, 王海宁, 晏江波. 南方离子型稀土矿开采的环境损伤及防治[J]. 有色金属科学 与工程, 2016, 7(1):125-132.
WEI J P, WANG H N, YAN J B. Environmental damages and control measures in exploiting ion-absorbed rare earth of South China[J]. Nonferrous Metals Science and Engineering, 2016, 7(1):125-132.
[4] 何淼, 周进生. 稀土综合利用新途径探究—华沙大学锡矿尾沙试验的启示[J]. 矿产综合利用, 2017(5):105-110. doi: 10.3969/j.issn.1000-6532.2017.05.024
HE M, ZHOU J S. New approach to he comprehensive utilizaiton of rare earth-the revelation of the Tin mine tailings test at the university of Warsaw[J]. Multipurpose Utilization of Mineral Resources, 2017(5):105-110. doi: 10.3969/j.issn.1000-6532.2017.05.024
[5] 詹光, 黄草明, 朱景和, 等. 南方离子型稀土冶炼废水治理现状与展望[J]. 矿产综合利用, 2018(3):18-25.
ZHAN G, HUANG C M , ZHU J H, et al. Development status and prospect of hydrometallurgy wastewater treatment technology in south tare earth[J]. Multipurpose Utilization of Mineral Resources, 2018(3):18-25.
[6] 苏文湫, 祝怡斌. 赣州稀土矿山废弃地土壤重金属污染现状评价[J]. 有色金属( 矿山部分), 2016, 68(4):81-85.
SU W Q, ZHU Y B. Evaluation of the soil heavy metal pollution in Ganzhou rare earth mine wasteland[J]. Nonferrous Metals(Mining Section), 2016, 68(4):81-85.
[7] 张培, 谢海云, 曹广祝, 等. 硫酸铵浸出离子型稀土矿对土壤和地下水污染的研究现状[J]. 矿冶, 2021, 30(4):95-101.
ZHANG P, XIE H Y, CAO G Z, et al. Current status of research on soil and groundwater contamination by ammonium sulfate leaching of ionic rare earth ores[J]. Mining and Metallurgy, 2021, 30(4):95-101.
[8] 郭钟群, 赵奎, 金解放, 等. 离子型稀土矿环境风险评估及污染治理研究进展[J]. 稀土, 2019, 403:115-126.
GUO Z Q, ZHAO K, JIN J F, et al. Reviews on environmental assessment and pollution prevention of ion adsorption type rare earth ores[J]. Chinese Rare Earths, 2019, 403:115-126.
[9] 温小军. 赣南稀土矿区土壤环境特征及稀土金属地球化学行为研究[D]. 昆明: 云南大学, 2012.
WEN X J. Study on characteristics of soil environment and geochemical behavior of rare earth metals in rare earth mining area of southern Jiangxi province[D]. Kunming: Yunnan University, 2012.
[10] 张军. 离子型稀土矿区重金属污染调查及Pb形态转化过程研究[D]. 赣州: 江西理工大学, 2019.
ZHANG J. Investigation of heavy metal pollution and form transformation of lead in ion-type rare earth mining area[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.
-