Research Progress of Microbial Technology in Mineral Processing and Metallurgy
-
摘要:
由于矿物逐渐被开采,优质矿物资源日益短缺,“贫、细、杂” 矿物的选别回收亟待解决,人们对选矿技术的要求越来越高。一些特殊的微生物本身或者其代谢物可以将矿物中的离子溶解出来,或者改变矿物的表面性质,并且,与传统选矿药剂和浸出剂相比,微生物具有成本较低,对后续环境污染小的优势,因此,微生物浮选和微生物冶金技术得到了快速的发展。本文介绍了国内外对微生物浸出、氧化、分解和微生物在矿物表面的吸附、化学反应及微生物细胞表面化学等方面的研究进展。
Abstract:Due to the gradual exploitation of minerals and the increasing shortage of high-quality mineral resources, the separation and recovery of "poor, fine and miscellaneous" minerals need to be solved urgently, and people's requirements for mineral processing technology are higher and higher. Some special microorganisms themselves or their metabolites can dissolve the ions in minerals or change the surface properties of minerals. Moreover, compared with traditional mineral processing reagents and leaching agents, microorganisms have the advantages of lower cost and less environmental pollution. Therefore, the micro biological flotation and microbial metallurgy technology has been developed rapidly. This paper introduces the research progress of bioleaching, oxidation, decomposition, adsorption, chemical reaction and cell surface chemistry of microorganisms at home and abroad.
-
Key words:
- Microorganism /
- Leaching /
- Oxidation /
- Decomposition /
- Surface adsorption /
- Chemical reaction
-
-
[1] 杨慧芬, 孙启伟, 马文凯, 等. 铁矾渣中有价金属的微生物矿化-浮选回收可能性和前景[J]. 矿产综合利用, 2020(1):43-46. doi: 10.3969/j.issn.1000-6532.2020.01.008
YANG H F, SUN Q W, MA W K, et al. Possibility and prospect of recovery of valuable metals in jarosite residues using microorganism mineralization-flotation Method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):43-46. doi: 10.3969/j.issn.1000-6532.2020.01.008
[2] 刘明实, 万选志, 刘子龙, 等. 甲玛地区角岩矿微生物浸出的实验研究[J]. 矿产综合利用, 2020(3):89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014
LIU M S, WAN X Z, LIU Z L, et al. Experimental study on the hornfels ore’s microbiological leaching in Jiama region[J]. Multipurpose Utilization of Mineral Resources, 2020(3):89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014
[3] 雷英杰, 艾翠玲, 张国春, 等. 微生物浸出技术及其研究进展[J]. 广州化工, 2016, 44(14):12-14. doi: 10.3969/j.issn.1001-9677.2016.14.006
LEI Y J, AI C L, ZHANG G C, et al. Microbial leaching technology and its research progress[J]. Guangzhou Chemical Industry, 2016, 44(14):12-14. doi: 10.3969/j.issn.1001-9677.2016.14.006
[4] Weimin Zeng, Guanzhou Qiu, Hongbo Zhou, et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2009, 100(3):177-180.
[5] 梁昱婷, 韩俊伟, 艾郴兵, 等. 两种极端嗜热古菌对黄铜矿的吸附和浸出行为(英文)[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2538-2544. doi: 10.1016/S1003-6326(18)64900-3
LIANG Y T, HAN J W, AI C B, et al. Adsorption and leaching behavior of chalcopyrite by two extremely thermophilic archaea[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2538-2544. doi: 10.1016/S1003-6326(18)64900-3
[6] 郝福来. 生物冶金技术的发展及其在黄金行业中的应用现状[J]. 黄金, 2019, 40(5):51-56. doi: 10.11792/hj20190511
HAO F L. Development of bio metallurgy technology and its application in gold industry[J]. Gold, 2019, 40(5):51-56. doi: 10.11792/hj20190511
[7] 李学亚, 叶茜. 微生物冶金技术及其应用[J]. 矿业工程, 2006(2):49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023
LI X Y, YE X. Microbial metallurgy technology and its application[J]. Mining Engineering, 2006(2):49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023
[8] 王传凯, 李响, 张永奎, 等. 喷淋塔中固定化Acidithiobacillusferrooxidans对Fe~(2+)的生物氧化特性研究[J]. 矿产综合利用, 2018(2):130-134. doi: 10.3969/j.issn.1000-6532.2018.02.029
WANG C K, LI X, ZHANG Y K, et al. Study on biological oxidation characteristics of Fe~(2+) by immobilized acidithiobacillusferrooxidans in spray tower[J]. Multipurpose Utilization of Mineral Resources, 2018(2):130-134. doi: 10.3969/j.issn.1000-6532.2018.02.029
[9] 陈茂春. 细菌分解磷矿基础研究[D]. 成都: 四川大学, 2001.
CHEN M C. Basic research on bacterial decomposition of phosphate rock[D]. Chengdu: Sichuan University, 2001.
[10] Halder A K, Mishra A K, Bhattacharyya P, et al. Solubilization of rock phosphate by rhizobium and bradyrhizobium[J]. Journal of General & Applied Microbiology, 1990, 36(2):81-92.
[11] Varsha Narsian, Jugnu Thakkar, H H Patel. Mineral phosphate solubilization by Aspergillus aculeatus[J]. Indian Journal of Experimental Biology, 1995, 33(2):91-93.
[12] E Nahas, D A Banzatto, L C Assis. Fluorapatitesolubilization by aspergillus niger in vinassemedium[J]. Pergamon, 1990, 22(8):1097-1101.
[13] Dwyer, Bruckard, Rea, et al. Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation[J]. Mineral Processing and Extractive Metallurgy, 2012, 121(2).
[14] 蒋鸿辉, 王琨. 生物选矿的应用研究现状及发展方向[J]. 中国矿业, 2005(9):76-78. doi: 10.3969/j.issn.1004-4051.2005.09.022
JIANG H H, WANG K. Application research status and development direction of biological beneficiation[J]. China Mining, 2005(9):76-78. doi: 10.3969/j.issn.1004-4051.2005.09.022
[15] Kianoush Barani, Masoud Kalantari. Recovery of kaolinite from tailings of zonouz kaolin-washing plant by flotation-flocculation method[J]. Journal of Materials Research and Technology, 2018, 7(2).
[16] N A Abdel-Khalek, K A Selim, K E Yassin, et al. Bio-flotation of egyptian phosphate using desulfvibrio desulfuricans bacteria[J]. Journal of Mining World Express, 2015:4.
[17] A Vilinska, K Hanumantha Rao. Leptosririllumferrooxidans-sulfide mineral interactions with reference to bioflotation and bioflocculation[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1403-1409. doi: 10.1016/S1003-6326(09)60016-9
[18] Ross W Smith, Manoranjan Misra, Shuzhong Chen. Adsorption of a hydrophobic bacterium onto hematite: Implications in the froth flotation of the mineral[J]. Journal of Industrial Microbiology, 2005, 11(2).
[19] Nagui A Abdel-Khalek, Khaled A Seiem, Samah E Mohammed, et al. Interaction between kaolinite and staphylococcus gallinarum bacteria[J]. Journal of Mining World Express, 2014:3.
[20] Beech Iwona B, Sunner Jan. Biocorrosion: towards understanding interactions between biofilms and metals[J]. Current opinion inbiotechnology, 2004, 15(3):181-186. doi: 10.1016/j.copbio.2004.05.001
[21] Agnieszka M, Didyk, Sadowski, et al. Flotation of serpentinite and quartz using biosurfactants [J]. Physicochemical Problems of Mineral Processing, 2012.
[22] Swaranjit Singh Cameotra, Randhir S Makkar , Biosurfactant-enhanced bioremediation of hydrophobic pollutants[J]. Pure and Applied Chemistry, 2013, 82(1).
[23] Yelloji Rao, M K Natarajan, et al. Effect of biotreatment with thiobacillusferrooxidans on the floatability of sphalerite and galena[J]. Mining, Metallurgy & Exploration, 1992, 9(2):95-100.
[24] E Amini, M Oliazadeh, M Kolahdoozan. Kinetic comparison of biological and conventional flotation of coal[J]. Minerals Engineering, 2009.
[25] Päivi Kinnunen, Hanna Miettinen, Malin Bomberg. Review of potential microbial effects on flotation[J]. Minerals, 2020: 10(6).
[26] H Sarvamangala, K A Natarajan. Microbially induced flotation of galena and quartz from pyrite[J]. Advanced Materials Research, 2009(8):35.
[27] 杨慧芬, 李甜, 唐琼瑶, 等. 浮选难选赤铁矿的微生物捕收剂的筛选及性能评价[J]. 中南大学学报(自然科学版), 2013, 44(11):4371-4378.
YANG H F, LI T, TANG Q Y, et al. Screening and performance evaluation of microbial collectors for flotation of refractory hematite[J]. Journal of Central South University (Natural Science Edition), 2013, 44(11):4371-4378.
-
计量
- 文章访问数: 2393
- PDF下载数: 251
- 施引文献: 0