Study on the Beneficiation-Metallurgy Process on an Argillaceous High Oxidation Gold in Henan Province
-
摘要:
河南某金矿具有嵌布关系复杂、氧化率高、泥化严重等特点,属于复杂难选泥质高氧化型金矿,选矿厂浮选指标不理想。为提高此类矿石的选矿回收率,开展了详细的实验研究,实验研究结果表明:采用单一浸出工艺和预氧化+浸出工艺均很难获得理想的浸出指标,Au浸出率仅为77.46%、80.28%;采用焙烧+浸出工艺可显著提高浸出指标,Au浸出率为93.66%,但技术经济性较差;采用浮选+浸出工艺可获得较为理想的指标,Au总回收率为94.25%,且工艺流程可操作性强。因此,浮选+浸出工艺对此类矿石具有较好的适应性,不仅可回收高度弥散分布在硫化物和脉石矿物中的超细微粒级金,而且粗粒级颗粒金也得到较好的回收。本研究为矿山企业的生产实践提供了重要借鉴。
Abstract:A gold in Henan Province is a complex and argillaceous high oxidation gold mines, and it has the characteristics of complex embedment characteristics, high oxidation rate and serious argillization, which lead to the poor beneficiation indexes . In order to improve the beneficiation recovery rate of this kind of ore, a detailed test was carried out. The results show that it is difficult to obtain a good leaching index by single leaching process or pre-oxidation-leaching process, and the leaching rate is 77.46% and 80.28%; The leaching index can be significantly improved to 93.66% by roasting-leaching process, but the technical economy is poor. A good total recovery indexes of 94.25% can be obtained by flotation-leaching process, which is highly operable. Therefore, the flotation-leaching process has good adaptability to this kind of ore, which can not only recover the ultra-fine particle gold highly dispersed in sulfide and gangue minerals, but also recover the medium and coarse particle gold. This study provides a reference for the production practice of mining enterprises.
-
Key words:
- Oxidized gold ore /
- Argillaceous /
- Flotation-leaching /
- Non-toxic leaching agent /
- Recovery rate
-
-
表 1 试样矿物成分及含量分析结果/%
Table 1. Mineral composition analysis results of the sample
非金属矿物 金属矿物 石英 40.30 菱铁矿 2.31 伊利石 31.32 褐铁矿 0.11 白云石 9.80 黄铁矿 0.02 斜长石 7.33 赤铁矿 <0.01 绿泥石 6.34 方铅矿 <0.01 角闪石 1.27 黝铜矿 <0.01 方解石 1.18 黄铜矿 <0.01 磷灰石 0.01 闪锌矿 <0.01 重晶石 <0.01 斑铜矿 <0.01 自然金 <0.01 表 2 试样多元素分析结果/%
Table 2. Multi-element analysis results of the sample
Au* Ag* Cu Pb Zn TFe2O3 Al2O3 TiO2 SiO2 As K2O CaO MgO S P2O5 TC 有机碳 Te* 1.42 2.84 0.004 0.0026 0.0051 10.76 14.39 0.94 48.27 0.0039 3.06 4.81 5.01 0.074 0.27 2.42 0.35 1.25 *单位为g/t。 表 3 试样金物相分析结果
Table 3. Gold element chemical phase analysis of the sample
名 称 品位/(g·t−1) 分布率/% 裸露半裸露金 0.64 45.01 碳酸盐包裹金 0.13 9.28 铜铅锌硫化物包裹金 0.34 23.77 赤铁矿包裹金 0.10 7.24 硫铁矿包裹金 0.12 8.51 石英硅酸盐包裹金 0.09 6.19 合 计 1.42 100.00 表 4 浮选+浸出实验结果
Table 4. Test result of flotation-leaching
浮选部分 产物名称 产率/% 品位Au/(g·t−1) 回收率/% 精 矿 1.43 58.45 61.15 尾 矿 98.57 0.54 38.85 计算原矿 100.00 1.37 100.00 浸出部分 浸出时间/h 浸渣品位/(g·t−1) 作业浸出率/% 总回收率/% 2 0.12 77.78 91.37 5 0.08 85.19 94.25 12 0.07 87.04 94.97 24 0.05 90.74 96.40 48 0.04 92.89 97.24 -
[1] 李得立, 曾小波, 魏友华, 等. 矿山企业矿产资源开发利用水平评价方法研究—以湖南省金矿矿山为例[J]. 矿产综合利用, 2019(5):22-27. doi: 10.3969/j.issn.1000-6532.2019.05.005
LI D L, ZENG X B, WEI Y H, et al. Research on evaluation method of mineral exploration level for mine enterprise-taking Hunan provice gold mine enterprise as an example[J]. Multipurpose Utilization of Mineral Resources, 2019(5):22-27. doi: 10.3969/j.issn.1000-6532.2019.05.005
[2] 张金矿, 李荣改, 来佳仪, 等. 河南某金矿尾矿再选工艺对比分析[J]. 矿业研究与开发, 2021, 41(5):141-145. doi: 10.13827/j.cnki.kyyk.2021.05.025
ZHANG J K, LI R G, LAI J Y, et al. Comparative analysis on tailings re-concentration process of a gold mine in Henan Province[J]. Mining Research and Development, 2021, 41(5):141-145. doi: 10.13827/j.cnki.kyyk.2021.05.025
[3] 明平田, 李飞. 某微细粒蚀变岩型金矿高效浮选新工艺研究[J]. 矿产综合利用, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015
MING P T, LI F. Study on a new high efficiency flotation process for a microgranular altered rock gold mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):73-78. doi: 10.3969/j.issn.1000-6532.2019.04.015
[4] 杜淑华, 潘邦龙, 夏亮, 等. 某高硫含砷碳低品位难处理金矿选矿试验研究[J]. 金属矿山, 2020(11):90-94. doi: 10.19614/j.cnki.jsks.202011014
DU S H, PAN B L, XIA L, et al. Experimental study on beneficiation of arsenic/carbon-bearing refractory of low-grade gold ore containing high sulfur[J]. Metal Mine, 2020(11):90-94. doi: 10.19614/j.cnki.jsks.202011014
[5] 黄业豪, 孙景敏, 李翠芬, 等. 内蒙古某金矿尼尔森重选试验研究[J]. 矿业研究与开发, 2019, 39(3):75-78. doi: 10.13827/j.cnki.kyyk.2019.03.017
HUANG Y H, SUN J M, LI C F, et al. Experimental study on the Knelson Gravity Separation of a gold ore in Inner Mongolia[J]. Mining Research and Development, 2019, 39(3):75-78. doi: 10.13827/j.cnki.kyyk.2019.03.017
[6] 王广伟, 谢卓宏, 蒲江东. 某极难选金矿石工艺矿物学[J]. 矿产综合利用, 2019(6):69-73. doi: 10.3969/j.issn.1000-6532.2019.06.015
WANG G W, XIE Z H, PU J D. Study on process mineralogy of an extremely refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6):69-73. doi: 10.3969/j.issn.1000-6532.2019.06.015
[7] 黄业豪, 孙景敏, 张雨田, 等. KC-MD3型尼尔森选矿机在某金矿磨矿回路中的试验研究[J]. 矿冶工程, 2019, 39(3):55-58. doi: 10.3969/j.issn.0253-6099.2019.03.013
HUANG Y H, SUN J M, ZHANG Y T, et al. Application of Knelson Concentrator KC-MD3 in grinding circuit of a gold mine[J]. Mining and Metallurgical Engineering, 2019, 39(3):55-58. doi: 10.3969/j.issn.0253-6099.2019.03.013
[8] 卢臣, 杨聪仁, 张仕奇, 等. 内蒙古某金矿磨矿分级产物离心重选实验研究[J]. 矿产综合利用, 2021(3):152-157.
LU C, YANG C R, ZHANG S Q, et al. Experimental study on the centrifugal separation of grinding classification products for a gold mine in Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2021(3):152-157.
[9] 黄晟, 吕兵超, 廖银英, 等. 某含金多金属矿尼尔森重选试验研究[J]. 矿产综合利用, 2019(2):51-56. doi: 10.3969/j.issn.1000-6532.2019.02.010
HUANG S, LV B C, LIAO Y Y, et al. Study on nelson gravity separation of a polymetallic ore bearing gold[J]. Multipurpose Utilization of Mineral Resources, 2019(2):51-56. doi: 10.3969/j.issn.1000-6532.2019.02.010
-