Review for High-purity Quartz (SiO2) (Part Ⅱ): Activation and Separation of Lattice Impurities
-
摘要:
高纯石英著以杂质极少、纯度极高,现已广泛地应用于光纤通信、光伏、航空航天、半导体显示等高新技术产业。广泛赋存于石英晶体结构中的微量金属、非金属元素(H、Li、B、Na、Al、P、K、Ca、Fe、Ti等)因被Si-O-Si键紧密束缚而难以被常规的选矿技术分离。本文详细地阐述了高纯石英中被晶格束缚的微量元素赋存机制,并对国际上高品质石英晶体结构中的微量元素的先进分离技术进行了全面、系统地概述;基于近年来我国高纯石英基础理论研究进展,对我国高纯石英晶格杂质分离的基础理论研究提出合理化的科学建议。
Abstract:High-purity quartz, famous for low impurities and high purity, has been widely used in optical fiber communication, photovoltaic, aerospace, semiconductor display and other high-tech industries. The trace metal and nonmetallic elements (H, Li, B, Na, Al, P, K, Ca, Fe, Ti, etc.) widely occurring in quartz crystal structure are closely bound by Si-O-Si bond, which is difficult to be separated by conventional mineral processing technology. In this paper, the occurrence mechanism of trace elements bound by lattice in high-purity quartz is described in detail, and the advanced separation technology of trace elements in the crystal structure of high-quality quartz in the world is comprehensively and systematically summarized. Based on the research progress of the basic theory of high-purity quartz in China in recent years, some reasonable scientific suggestions on the basic theory of impurity separation of high-purity quartz lattice in China are put forward.
-
Key words:
- High-purity quartz /
- Lattice impurity /
- Activation and separation
-
-
图 1 α-石英中五种典型晶格取代分子模拟图像[4]
Figure 1.
结构 键长/Å 键角/(°) 能量/eV Si-O-Si Si-O: 1.61 O-Si-O: 108.64 Si-O-Si 142.37 -23663.02 Si=Al+Li Al-O: 1.70-1.77 O-Al-O: 103.10-117.03 Al-O-Si:125.21-137.47 -23804.49 2Si=Al+P Al-O:1.79-1.72
P-O:1.48- 1.53O-P-O: 105.64-113.26
O-Al-O: 102.91-114.12P-O-Al:145.27 -23683.07 Si=Ti Ti-O: 1.80 O-Ti-O: 108.48-111.13 Ti-O-Si: 132.66-135.24 -25159.76 Si=4H O-H:0.97- 0.99 H-O-Si: 111.07-125.47 -23615.62 Si=B+H B-O: 1.40
H-O: 0.98O-B-O: 117.38-118.72
H-O-Si: 116.6B-O-Si: 134.66-158.35 -23647.24 -
[1] 钟乐乐. 超高纯石英纯化制备及机理研究[D]. 武汉: 武汉理工大学, 2015.
ZHONG L L. Study on purification, preparation and mechanism of ultra-high purity quartz [D]. Wuhan: Wuhan University of Technology, 2015.
[2] Axel Müller, Wanvik J E , Ihlen P M . Quartz: deposits, mineralogy and analytics[J]. 2012.
[3] Jens Götze, Mineralogy of quartz and silica minerals[M]. 2018.
[4] Lin M, Pei Z Y, Li Y B, et al. Separation mechanism of lattice-bound trace elements from quartz by KCl-doping calcination and pressure leaching[J]. Minerals Engineering, 2018, 125:42-49. doi: 10.1016/j.mineng.2018.05.029
[5] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B Condensed Matter, 1992, 45(23):13244. doi: 10.1103/PhysRevB.45.13244
[6] Botis S M, Pan Y. Theoretical calculations of [AlO4/M+]0 defects in quartz and crystal-chemical controls on the uptake of Al[J]. Mineralogical Magazine, 2009, 73(4):537-550. doi: 10.1180/minmag.2009.073.4.537
[7] Haus R, Prinz S, Priess C. Assessment of high purity quartz resources. In: Götze J, Möckel R (eds) Quartz: Deposits, mineralogy and analytics[M]. Berlin, Heidelberg: Berlin Heidelberg Springer, 2012: 29-51.
[8] Lin M, Lei S M, Pei Z Y, Liu Y Y, Xia Z J, Xie F X. Application of hydrometallurgy techniques in quartz processing and purification: a review[J]. Metallurgical Research & Technology, 2018, 115:303.
[9] Wright PM, Weil JA, Buch T, et al. Titanium colourcentres in rose quartz[J]. Nature, 1963, 4864(197):246-248.
[10] 诸培南. 显微结构与SiO2相变过程[J]. 硅酸盐学报, 1980(3):81-87+131-132.
ZHU P N. Microstructure and SiO2 phase transition process[J]. Journal of The Chinese Ceramic Society, 1980(3):81-87+131-132.
[11] 闫勇, 卢义飞, 郑翠红, 等. 石英砂除铁钛杂质的新工艺研究[J]. 矿产综合利用, 2009(1):17-20. doi: 10.3969/j.issn.1000-6532.2009.01.005
YAN Y, LU Y F, ZHENG C H, et al. Research on the new technology of removing iron and titanium impurities from quartz sand[J]. Multipurpose Utilization of Mineral Resources, 2009(1):17-20. doi: 10.3969/j.issn.1000-6532.2009.01.005
[12] Varadachari C, An investigation on the reaction of phosphoric acid with mica at elevated temperatures[J]. Industrial & Engineering Chemistry Research, 1992, 31 (1): 357-364.
[13] Mifsud C, Fujioka T, Fink D. Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 294:203-207. doi: 10.1016/j.nimb.2012.08.037
-