矿区土壤重金属污染化学修复及强化方法研究进展

端爱玲, 杨树俊, 韩张雄, 张树雄, 王思远, 李敏. 矿区土壤重金属污染化学修复及强化方法研究进展[J]. 矿产综合利用, 2022, 43(6): 104-109. doi: 10.3969/j.issn.1000-6532.2022.06.018
引用本文: 端爱玲, 杨树俊, 韩张雄, 张树雄, 王思远, 李敏. 矿区土壤重金属污染化学修复及强化方法研究进展[J]. 矿产综合利用, 2022, 43(6): 104-109. doi: 10.3969/j.issn.1000-6532.2022.06.018
Duan Ailing, Yang Shujun, Han Zhangxiong, Zhang Shuxiong, Wang Siyuan, Li Min. Research Progress on Chemical Remediation and Strengthening Methods of Heavy Metal Contaminated Soil in Mining Areas[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 104-109. doi: 10.3969/j.issn.1000-6532.2022.06.018
Citation: Duan Ailing, Yang Shujun, Han Zhangxiong, Zhang Shuxiong, Wang Siyuan, Li Min. Research Progress on Chemical Remediation and Strengthening Methods of Heavy Metal Contaminated Soil in Mining Areas[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 104-109. doi: 10.3969/j.issn.1000-6532.2022.06.018

矿区土壤重金属污染化学修复及强化方法研究进展

  • 基金项目: 江苏省地质工程勘察院测试中心科研基金(2021-01);陕西省自然科学基金项目(2014JM5217)
详细信息
    作者简介: 端爱玲(1977-),女,高级工程师,主要从事化学检测及重金属污染治理研究
    通讯作者: 李敏(1972-),女,高级工程师(研高),主要从事实验测试工作
  • 中图分类号: TD985; X751

Research Progress on Chemical Remediation and Strengthening Methods of Heavy Metal Contaminated Soil in Mining Areas

More Information
  • 随着开采活动的加剧,矿区土壤污染问题日益突出。如今的修复方法主要有物理修复,化学修复,生物修复等。其中化学修复法效率高、修复快速,但修复过程中容易造成矿区土壤环境的退化,因此,在利用化学修复方法的同时,如果结合其他方法,将会有更广泛的应用前景。本文通过对矿区土壤化学修复法的研究现状、存在问题进行分析,同时总结了化学法联合其他方法的研究热点,分析得出当前化学修复方法应当结合其他方法,开展联合强化修复,以确保修复过程减少化学物质对矿区土壤的二次污染。

  • 加载中
  • 表 1  修复重金属污染土壤的常用淋洗剂、优缺点及修复机制

    Table 1.  Commonly used eluents, advantages and disadvantages and repair mechanisms for the repair of heavy metal contaminated soil

    类别淋洗试剂优缺点淋洗机制文献
    无机淋洗剂 盐酸,硫酸,硝酸,磷酸等 √效果好、速度快、成本低
    ×对土壤结构破坏严重,不易再生利用
    酸解、离子交换 [21]
    人工螯合剂 EDTA,DTPA, NTA等 √使用范围广、效率高
    ×生物降解性差,二次污染风险大
    络合反应 [22]
    天然螯合剂 柠檬酸、草酸等 √可生物降、对土壤温和
    ×淋洗效率低
    络合反应 [23]
    中性盐 NaCl CaCl2 FeCl3 √化学性质较温和,对土壤破坏性较小 离子交换、络合反应 [24]
    表面活性剂 SDBS、SDS、RL2、
    皂苷、皂角苷等
    √种类多,环境的危害
    更小特别是生物表面活性剂,并具有较好的生物降解性
    ×价格相对较高
    离子交换、亲水和疏水基团共同作用、降低界面活化能、沉淀—溶解和离子结合 [25]
    复合淋洗剂 以上试剂的混合/复配 √综合不同淋洗剂的优点淋洗效率高 以上机制的复合 [26]
    下载: 导出CSV
  • [1]

    李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    [2]

    罗妍, 黄艺, 余大明, 等. 东北典型煤矿区重金属环境评价与分析[J]. 矿产综合利用, 2021(4):50-58. doi: 10.3969/j.issn.1000-6532.2021.04.008

    LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4):50-58. doi: 10.3969/j.issn.1000-6532.2021.04.008

    [3]

    Liu Ruiping, Xu Youning, Zhang Jianghua, et al. Effects of heavy metal pollution on farmland soils and crops: A case study of the xiaoqinling gold belt[J]. China Geology . 2020, 3(3): 402-410.

    [4]

    Xiao R, Shen F, Du J, et al. Screening of native plants from wasteland surrounding a zn smelter in feng county china, for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2018, 162:178-183. doi: 10.1016/j.ecoenv.2018.06.095

    [5]

    邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学- 微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    [6]

    Xu D M, Fu R B, Liu H Q, et al. Current knowledge from heavy metal pollution in chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review [J]. Journal of Cleaner Production, 2020.

    [7]

    朱桂芬, 王莉, 田野, 等. 化学淋洗联合油葵植物修复土壤中cd[J]. 河南师范大学学报, 2016, 44(1):101-104.

    ZHU G F, WANG L, TIAN Y, et al. Chemical leaching combined with oil sunflower phytoremediation of cd in soil[J]. Journal of Henan Normal University, 2016, 44(1):101-104.

    [8]

    孙伦涛, 储燕, 邵将, 等. 蚯蚓分泌液在植物修复重金属污染土壤中的应用[J]. 安徽农学通报, 2020, 26(6):155-157. doi: 10.3969/j.issn.1007-7731.2020.16.059

    SUN L T, CHU Y, SHAO J, et al. Application of earthworm secretion in phytoremediation of heavy metal contaminated soil[J]. Anhui Agricultural Science Bulletin, 2020, 26(6):155-157. doi: 10.3969/j.issn.1007-7731.2020.16.059

    [9]

    韩廿, 黄益宗, 魏祥东, 等. 螯合剂对油葵修复镉砷复合污染土壤的影响 [J]. 农业环境科学学报, 2019, 38(8): 1891-1900.

    HAN N, HUANG Y Z, WEI X D, et al. Effects of chelating agents on oil sunflower remediation of soil contaminated by cadmium and arsenic [J]. Journal of Agro-Environment Science, 2019, 38(8): 1891-1900.

    [10]

    陈哲, 冯秀娟, 朱易春, 等. 天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究[J]. 岩矿测试, 2020, 39(6):847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096

    CHEN Z, FENG X J, ZHU Y C, et al. Study on the passivation effect of natural and modified attapulgite on the heavy metal lead in the soil of rare earth tailings[J]. Rock and Mineral Testing, 2020, 39(6):847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096

    [11]

    Rahman Z, Jagadheeswari, Mohan A, et al. Electrokinetic remediation: An innovation for heavy metal contamination in the soil environment [J]. Materials Today: Proceedings, 2020.

    [12]

    Kunkel A M, Seibert J J, Elliott L J, et al. Remediation of elemental mercury using in situ thermal desorption (istd) [J]. Environmental Science & Technology: ES&T, 2006, 40(7): 2384-2389.

    [13]

    赵首萍, 叶雪珠, 张琪, 等. 重金属污染土壤几种生物修复方式比较[J]. 中国农学通报, 2020, 36(20):83-91.

    ZHAO S P, YE X Z, ZHANG Q, et al. Comparison of several bioremediation methods of heavy metal contaminated soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(20):83-91.

    [14]

    Yang G, Wagg C, Veresoglou S D, et al. How soil biota drive ecosystem stability[J]. Trends Plant Sci, 2018, 23(12):1057-1067. doi: 10.1016/j.tplants.2018.09.007

    [15]

    段桂兰, 崔慧灵, 杨雨萍, 等. 重金属污染土壤中生物间相互作用及其协同修复应用[J]. 生物工程学报, 2020, 36(3):455-470. doi: 10.13345/j.cjb.190598

    DUAN G L, CUI H L, YANG Y P, et al. Interaction between organisms in heavy metal contaminated soil and their cooperative remediation application[J]. Chinese Journal of Biological Engineering, 2020, 36(3):455-470. doi: 10.13345/j.cjb.190598

    [16]

    Wu G, Kang H, Zhang X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1-3):1-8. doi: 10.1016/j.jhazmat.2009.09.113

    [17]

    S Tampouris, N Papassionpi, I Paspaliaris. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques [J]. Journal of Hazardous Materials, 2001, 84(2/3): 297-319.

    [18]

    熊伟. 超声强化柠檬酸淋洗修复锑污染土壤的研究[J]. 湖南有色金属, 2020, 36(4):62-65. doi: 10.3969/j.issn.1003-5540.2020.04.018

    XIONG W. Study on remediation of antimony contaminated soil by ultrasonic enhanced citric acid leaching[J]. Hunan Nonferrous Metals, 2020, 36(4):62-65. doi: 10.3969/j.issn.1003-5540.2020.04.018

    [19]

    芮大虎, 武智鹏, 武迎飞, 等. 冻融_化学淋洗法协同修复重金属Cd和Pb污染黏性土[J]. 农业工程学报, 2018, 34(23):199-205. doi: 10.11975/j.issn.1002-6819.2018.23.025

    RUI D H, WU Z P, WU Y F, et al. Freeze-thaw chemical leaching method for synergistic repair of heavy metal Cd and Pb contaminated clay[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23):199-205. doi: 10.11975/j.issn.1002-6819.2018.23.025

    [20]

    薛清华, 黄凤莲, 梁芳, 等. EDTA/DTPA与柠檬酸混合连洗土壤中镉铅及其对土壤肥力的影响[J]. 矿冶工程, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020

    XUE Q H, HUANG F L, LIANG F, et al. Mixing EDTA/DTPA and citric acid to wash soil cadmium and lead and its effect on soil fertility[J]. Mining and Metallurgical Engineering, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020

    [21]

    Makino T, Sugahara K, Sakurai Y, et al. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals[J]. Environmental Pollution, 2006, 144(1):2-10. doi: 10.1016/j.envpol.2006.01.017

    [22]

    陈晓婷, 王欣, 陈新. 几种螯合剂对污染土壤的重金属提取效率的研究[J]. 江苏环境科技, 2005, 18(2):9-10+3.

    CHEN X T, WANG X, CHEN X. Study on the extraction efficiency of heavy metals from contaminated soil by several chelating agents[J]. Jiangsu Environmental Science and Technology, 2005, 18(2):9-10+3.

    [23]

    Bassi R, Prasher S O, Simpson B K. Extraction of metals from a contaminated sandy soil using citric acid[J]. Environmental Progress, 2000, 19(4):275-282. doi: 10.1002/ep.670190415

    [24]

    李婷, 蔡芫镔, 方圣琼, 等. 淋洗修复重金属Pb污染土壤技术研究[J]. 环保技术, 2020(4):62-65.

    LI T, CAI Y B, FANG S Q, et al. Study on technology of leaching and remediation of heavy metal Pb contaminated soil[J]. Environmental Protection Technology, 2020(4):62-65.

    [25]

    Ji W, Abou Khalil C, Parameswarappa Jayalakshmamma M, et al. Behavior of surfactants and surfactant blends in soils during remediation: A review[J]. Environmental Challenges, 2021:2.

    [26]

    鲍根莲, 邓欢欢, 李少君, 等. 生物表面活性剂和化学螯合剂强化无柄小叶榕修复Cd、Cu重金属污染盐碱地[J]. 环境化学, 2019, 38(7):1498-1506. doi: 10.7524/j.issn.0254-6108.2018092705

    BAO G L, DENG H H, LI S J, et al. Biosurfactants and chemical chelating agents enhance the restoration of Cd and Cu heavy metal polluted saline-alkali soils by Ficus sessileum[J]. Environmental Chemistry, 2019, 38(7):1498-1506. doi: 10.7524/j.issn.0254-6108.2018092705

    [27]

    Hale B, Evans L, Lambert R. Effects of cement or lime on cd, co, cu, ni, pb, sb and zn mobility in field-contaminated and aged soils[J]. J Hazard Mater, 2012, 199-200:119-127. doi: 10.1016/j.jhazmat.2011.10.065

    [28]

    Enzo, Lombi, Rebecca E, Hamon, Steve P, et al. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques[J]. Environmental Science & Technology, 2003, 37(5):979-984.

    [29]

    Jiang T Y, Jang J, Xu R K, et al. Adsorption of Pb(ii) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 2012, 89(3):249-256. doi: 10.1016/j.chemosphere.2012.04.028

    [30]

    Wang Y, Xu Y, Li D, et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. Sci Total Environ, 2017, 621:1057-1065.

    [31]

    F. Debela J M A, R. W. Thring, T. Whitcombe. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of pb-contaminated soils[J]. Chemosphere, 2010, 80(4):450-456. doi: 10.1016/j.chemosphere.2010.04.025

    [32]

    Zhai X, Li Z, Huang B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization[J]. Sci Total Environ, 2018, 635:92-99. doi: 10.1016/j.scitotenv.2018.04.119

    [33]

    周宽, 皇甫卓曦, 钟承韡, 等. 可生物降解螯合剂GLDA诱导葎草修复镉污染土壤[J]. 环境工程, 2020, 41(2):483-489. doi: 10.13205/j.hjgc.202105023

    ZHOU K, HUANGFU Z X, ZHONG C W, et al. Biodegradable chelating agent GLDA induces Humulus japonicus to remediate cadmium contaminated soil[J]. Environmental Engineering, 2020, 41(2):483-489. doi: 10.13205/j.hjgc.202105023

    [34]

    傅校锋, 刘杰, 龙玉梅, 等. 强化青葙修复镉污染土壤的柠檬酸施用方式优化试验研究[J]. 土壤, 2020, 52(1):153-159. doi: 10.13758/j.cnki.tr.2020.01.022

    FU X F, LIU J, LONG Y M, et al. An experimental study on the optimization of citric acid application method for strengthening the argentea remediating cadmium contaminated soil[J]. Soil, 2020, 52(1):153-159. doi: 10.13758/j.cnki.tr.2020.01.022

    [35]

    刁静茹, 赵保卫, 马锋锋, 等. 螯合型表面活性剂强化黑麦草修复Cd污染水体[J]. 中国环境科学, 2020, 40(5):2238-2245. doi: 10.3969/j.issn.1000-6923.2020.05.046

    DIAO J R, ZHAO B W, MA F F, et al. Chelating surfactants strengthen ryegrass to repair Cd polluted water bodies[J]. China Environmental Science, 2020, 40(5):2238-2245. doi: 10.3969/j.issn.1000-6923.2020.05.046

    [36]

    赵述华, 张太平, 陈志良, 等. 稳定化处理砷污染土壤对3种修复植物的生态效应[J]. 中国环境科学, 2019, 39(9):3925-3932. doi: 10.3969/j.issn.1000-6923.2019.09.039

    ZHAO S H, ZHANG T P, CHEN Z L, et al. Ecological effects of stabilizing arsenic-contaminated soil on three remediation plants[J]. China Environmental Science, 2019, 39(9):3925-3932. doi: 10.3969/j.issn.1000-6923.2019.09.039

    [37]

    彭婧, 蔡婧, 林初夏. 超积累植物和化学改良剂联合修复锌镉污染土壤后的微生物特征[J]. 生态环境, 2005, 14(5):654-657.

    PENG J, CAI J, LIN C X. Microbial characteristics of hyperaccumulators and chemical amendments combined to remediate soil contaminated by zinc and cadmium[J]. Ecology and Environmnet, 2005, 14(5):654-657.

    [38]

    周鸣, 汤红妍, 朱书法, 等. EDTA强化电动力学修复重金属复合污染土壤[J]. 环境工程学报, 2014, 8(3):1198-1202.

    ZHOU M, TANG H Y, ZHU S F, et al. EDTA enhanced electrodynamics to remediate soil contaminated by heavy metals[J]. Environmental Engineering Journal, 2014, 8(3):1198-1202.

    [39]

    吴桐. 电动修复铬污染高岭土及铬渣污染土试验研究 [D]. 北京: 中国地质大学, 2013.

    WU T. Experimental study on electric remediation of chromium-contaminated kaolin and chromium-contaminated soil [D]. Beijing: China University of Geosciences, 2013.

    [40]

    Yuan L, Li H, Xu X, et al. Electrokinetic remediation of heavy metals contaminated kaolin by a cnt-covered polyethylene terephthalate yarn cathode[J]. Electrochimica Acta, 2016, 213:140-147. doi: 10.1016/j.electacta.2016.07.081

  • 加载中

(1)

计量
  • 文章访问数:  1518
  • PDF下载数:  210
  • 施引文献:  0
出版历程
收稿日期:  2021-03-09
修回日期:  2021-09-02
刊出日期:  2022-12-25

目录