Research Progress on Chemical Remediation and Strengthening Methods of Heavy Metal Contaminated Soil in Mining Areas
-
摘要:
随着开采活动的加剧,矿区土壤污染问题日益突出。如今的修复方法主要有物理修复,化学修复,生物修复等。其中化学修复法效率高、修复快速,但修复过程中容易造成矿区土壤环境的退化,因此,在利用化学修复方法的同时,如果结合其他方法,将会有更广泛的应用前景。本文通过对矿区土壤化学修复法的研究现状、存在问题进行分析,同时总结了化学法联合其他方法的研究热点,分析得出当前化学修复方法应当结合其他方法,开展联合强化修复,以确保修复过程减少化学物质对矿区土壤的二次污染。
Abstract:With the intensification of mining activities, the problem of soil pollution in mining area becomes more and more serious. Nowadays, the main methods include physical remediation, chemical remediation, bio-remediation and so on. Among them, chemical remediation method is efficient, fast, easy to combine with other methods to strengthen remediation, and has a good application prospect in synergistic effect. Based on the research status and existing problems of chemical remediation, this paper summarizes the research hotspots of chemical remediation combined with other methods, and concludes that current chemical remediation should be combined with other methods to strengthen remediation, so as to ensure that the remediation process can reduce the secondary pollution of soil caused by chemical substances.
-
Key words:
- Mine soil /
- Heavy metal pollution /
- Pollution remediation /
- Strengthen remediation
-
-
表 1 修复重金属污染土壤的常用淋洗剂、优缺点及修复机制
Table 1. Commonly used eluents, advantages and disadvantages and repair mechanisms for the repair of heavy metal contaminated soil
类别 淋洗试剂 优缺点 淋洗机制 文献 无机淋洗剂 盐酸,硫酸,硝酸,磷酸等 √效果好、速度快、成本低
×对土壤结构破坏严重,不易再生利用酸解、离子交换 [21] 人工螯合剂 EDTA,DTPA, NTA等 √使用范围广、效率高
×生物降解性差,二次污染风险大络合反应 [22] 天然螯合剂 柠檬酸、草酸等 √可生物降、对土壤温和
×淋洗效率低络合反应 [23] 中性盐 NaCl CaCl2 FeCl3等 √化学性质较温和,对土壤破坏性较小 离子交换、络合反应 [24] 表面活性剂 SDBS、SDS、RL2、
皂苷、皂角苷等√种类多,环境的危害
更小特别是生物表面活性剂,并具有较好的生物降解性
×价格相对较高离子交换、亲水和疏水基团共同作用、降低界面活化能、沉淀—溶解和离子结合 [25] 复合淋洗剂 以上试剂的混合/复配 √综合不同淋洗剂的优点淋洗效率高 以上机制的复合 [26] -
[1] 李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006
LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006
[2] 罗妍, 黄艺, 余大明, 等. 东北典型煤矿区重金属环境评价与分析[J]. 矿产综合利用, 2021(4):50-58. doi: 10.3969/j.issn.1000-6532.2021.04.008
LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4):50-58. doi: 10.3969/j.issn.1000-6532.2021.04.008
[3] Liu Ruiping, Xu Youning, Zhang Jianghua, et al. Effects of heavy metal pollution on farmland soils and crops: A case study of the xiaoqinling gold belt[J]. China Geology . 2020, 3(3): 402-410.
[4] Xiao R, Shen F, Du J, et al. Screening of native plants from wasteland surrounding a zn smelter in feng county china, for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2018, 162:178-183. doi: 10.1016/j.ecoenv.2018.06.095
[5] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学- 微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001
DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001
[6] Xu D M, Fu R B, Liu H Q, et al. Current knowledge from heavy metal pollution in chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review [J]. Journal of Cleaner Production, 2020.
[7] 朱桂芬, 王莉, 田野, 等. 化学淋洗联合油葵植物修复土壤中cd[J]. 河南师范大学学报, 2016, 44(1):101-104.
ZHU G F, WANG L, TIAN Y, et al. Chemical leaching combined with oil sunflower phytoremediation of cd in soil[J]. Journal of Henan Normal University, 2016, 44(1):101-104.
[8] 孙伦涛, 储燕, 邵将, 等. 蚯蚓分泌液在植物修复重金属污染土壤中的应用[J]. 安徽农学通报, 2020, 26(6):155-157. doi: 10.3969/j.issn.1007-7731.2020.16.059
SUN L T, CHU Y, SHAO J, et al. Application of earthworm secretion in phytoremediation of heavy metal contaminated soil[J]. Anhui Agricultural Science Bulletin, 2020, 26(6):155-157. doi: 10.3969/j.issn.1007-7731.2020.16.059
[9] 韩廿, 黄益宗, 魏祥东, 等. 螯合剂对油葵修复镉砷复合污染土壤的影响 [J]. 农业环境科学学报, 2019, 38(8): 1891-1900.
HAN N, HUANG Y Z, WEI X D, et al. Effects of chelating agents on oil sunflower remediation of soil contaminated by cadmium and arsenic [J]. Journal of Agro-Environment Science, 2019, 38(8): 1891-1900.
[10] 陈哲, 冯秀娟, 朱易春, 等. 天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究[J]. 岩矿测试, 2020, 39(6):847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096
CHEN Z, FENG X J, ZHU Y C, et al. Study on the passivation effect of natural and modified attapulgite on the heavy metal lead in the soil of rare earth tailings[J]. Rock and Mineral Testing, 2020, 39(6):847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096
[11] Rahman Z, Jagadheeswari, Mohan A, et al. Electrokinetic remediation: An innovation for heavy metal contamination in the soil environment [J]. Materials Today: Proceedings, 2020.
[12] Kunkel A M, Seibert J J, Elliott L J, et al. Remediation of elemental mercury using in situ thermal desorption (istd) [J]. Environmental Science & Technology: ES&T, 2006, 40(7): 2384-2389.
[13] 赵首萍, 叶雪珠, 张琪, 等. 重金属污染土壤几种生物修复方式比较[J]. 中国农学通报, 2020, 36(20):83-91.
ZHAO S P, YE X Z, ZHANG Q, et al. Comparison of several bioremediation methods of heavy metal contaminated soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(20):83-91.
[14] Yang G, Wagg C, Veresoglou S D, et al. How soil biota drive ecosystem stability[J]. Trends Plant Sci, 2018, 23(12):1057-1067. doi: 10.1016/j.tplants.2018.09.007
[15] 段桂兰, 崔慧灵, 杨雨萍, 等. 重金属污染土壤中生物间相互作用及其协同修复应用[J]. 生物工程学报, 2020, 36(3):455-470. doi: 10.13345/j.cjb.190598
DUAN G L, CUI H L, YANG Y P, et al. Interaction between organisms in heavy metal contaminated soil and their cooperative remediation application[J]. Chinese Journal of Biological Engineering, 2020, 36(3):455-470. doi: 10.13345/j.cjb.190598
[16] Wu G, Kang H, Zhang X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1-3):1-8. doi: 10.1016/j.jhazmat.2009.09.113
[17] S Tampouris, N Papassionpi, I Paspaliaris. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques [J]. Journal of Hazardous Materials, 2001, 84(2/3): 297-319.
[18] 熊伟. 超声强化柠檬酸淋洗修复锑污染土壤的研究[J]. 湖南有色金属, 2020, 36(4):62-65. doi: 10.3969/j.issn.1003-5540.2020.04.018
XIONG W. Study on remediation of antimony contaminated soil by ultrasonic enhanced citric acid leaching[J]. Hunan Nonferrous Metals, 2020, 36(4):62-65. doi: 10.3969/j.issn.1003-5540.2020.04.018
[19] 芮大虎, 武智鹏, 武迎飞, 等. 冻融_化学淋洗法协同修复重金属Cd和Pb污染黏性土[J]. 农业工程学报, 2018, 34(23):199-205. doi: 10.11975/j.issn.1002-6819.2018.23.025
RUI D H, WU Z P, WU Y F, et al. Freeze-thaw chemical leaching method for synergistic repair of heavy metal Cd and Pb contaminated clay[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23):199-205. doi: 10.11975/j.issn.1002-6819.2018.23.025
[20] 薛清华, 黄凤莲, 梁芳, 等. EDTA/DTPA与柠檬酸混合连洗土壤中镉铅及其对土壤肥力的影响[J]. 矿冶工程, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020
XUE Q H, HUANG F L, LIANG F, et al. Mixing EDTA/DTPA and citric acid to wash soil cadmium and lead and its effect on soil fertility[J]. Mining and Metallurgical Engineering, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020
[21] Makino T, Sugahara K, Sakurai Y, et al. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals[J]. Environmental Pollution, 2006, 144(1):2-10. doi: 10.1016/j.envpol.2006.01.017
[22] 陈晓婷, 王欣, 陈新. 几种螯合剂对污染土壤的重金属提取效率的研究[J]. 江苏环境科技, 2005, 18(2):9-10+3.
CHEN X T, WANG X, CHEN X. Study on the extraction efficiency of heavy metals from contaminated soil by several chelating agents[J]. Jiangsu Environmental Science and Technology, 2005, 18(2):9-10+3.
[23] Bassi R, Prasher S O, Simpson B K. Extraction of metals from a contaminated sandy soil using citric acid[J]. Environmental Progress, 2000, 19(4):275-282. doi: 10.1002/ep.670190415
[24] 李婷, 蔡芫镔, 方圣琼, 等. 淋洗修复重金属Pb污染土壤技术研究[J]. 环保技术, 2020(4):62-65.
LI T, CAI Y B, FANG S Q, et al. Study on technology of leaching and remediation of heavy metal Pb contaminated soil[J]. Environmental Protection Technology, 2020(4):62-65.
[25] Ji W, Abou Khalil C, Parameswarappa Jayalakshmamma M, et al. Behavior of surfactants and surfactant blends in soils during remediation: A review[J]. Environmental Challenges, 2021:2.
[26] 鲍根莲, 邓欢欢, 李少君, 等. 生物表面活性剂和化学螯合剂强化无柄小叶榕修复Cd、Cu重金属污染盐碱地[J]. 环境化学, 2019, 38(7):1498-1506. doi: 10.7524/j.issn.0254-6108.2018092705
BAO G L, DENG H H, LI S J, et al. Biosurfactants and chemical chelating agents enhance the restoration of Cd and Cu heavy metal polluted saline-alkali soils by Ficus sessileum[J]. Environmental Chemistry, 2019, 38(7):1498-1506. doi: 10.7524/j.issn.0254-6108.2018092705
[27] Hale B, Evans L, Lambert R. Effects of cement or lime on cd, co, cu, ni, pb, sb and zn mobility in field-contaminated and aged soils[J]. J Hazard Mater, 2012, 199-200:119-127. doi: 10.1016/j.jhazmat.2011.10.065
[28] Enzo, Lombi, Rebecca E, Hamon, Steve P, et al. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques[J]. Environmental Science & Technology, 2003, 37(5):979-984.
[29] Jiang T Y, Jang J, Xu R K, et al. Adsorption of Pb(ii) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 2012, 89(3):249-256. doi: 10.1016/j.chemosphere.2012.04.028
[30] Wang Y, Xu Y, Li D, et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. Sci Total Environ, 2017, 621:1057-1065.
[31] F. Debela J M A, R. W. Thring, T. Whitcombe. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of pb-contaminated soils[J]. Chemosphere, 2010, 80(4):450-456. doi: 10.1016/j.chemosphere.2010.04.025
[32] Zhai X, Li Z, Huang B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization[J]. Sci Total Environ, 2018, 635:92-99. doi: 10.1016/j.scitotenv.2018.04.119
[33] 周宽, 皇甫卓曦, 钟承韡, 等. 可生物降解螯合剂GLDA诱导葎草修复镉污染土壤[J]. 环境工程, 2020, 41(2):483-489. doi: 10.13205/j.hjgc.202105023
ZHOU K, HUANGFU Z X, ZHONG C W, et al. Biodegradable chelating agent GLDA induces Humulus japonicus to remediate cadmium contaminated soil[J]. Environmental Engineering, 2020, 41(2):483-489. doi: 10.13205/j.hjgc.202105023
[34] 傅校锋, 刘杰, 龙玉梅, 等. 强化青葙修复镉污染土壤的柠檬酸施用方式优化试验研究[J]. 土壤, 2020, 52(1):153-159. doi: 10.13758/j.cnki.tr.2020.01.022
FU X F, LIU J, LONG Y M, et al. An experimental study on the optimization of citric acid application method for strengthening the argentea remediating cadmium contaminated soil[J]. Soil, 2020, 52(1):153-159. doi: 10.13758/j.cnki.tr.2020.01.022
[35] 刁静茹, 赵保卫, 马锋锋, 等. 螯合型表面活性剂强化黑麦草修复Cd污染水体[J]. 中国环境科学, 2020, 40(5):2238-2245. doi: 10.3969/j.issn.1000-6923.2020.05.046
DIAO J R, ZHAO B W, MA F F, et al. Chelating surfactants strengthen ryegrass to repair Cd polluted water bodies[J]. China Environmental Science, 2020, 40(5):2238-2245. doi: 10.3969/j.issn.1000-6923.2020.05.046
[36] 赵述华, 张太平, 陈志良, 等. 稳定化处理砷污染土壤对3种修复植物的生态效应[J]. 中国环境科学, 2019, 39(9):3925-3932. doi: 10.3969/j.issn.1000-6923.2019.09.039
ZHAO S H, ZHANG T P, CHEN Z L, et al. Ecological effects of stabilizing arsenic-contaminated soil on three remediation plants[J]. China Environmental Science, 2019, 39(9):3925-3932. doi: 10.3969/j.issn.1000-6923.2019.09.039
[37] 彭婧, 蔡婧, 林初夏. 超积累植物和化学改良剂联合修复锌镉污染土壤后的微生物特征[J]. 生态环境, 2005, 14(5):654-657.
PENG J, CAI J, LIN C X. Microbial characteristics of hyperaccumulators and chemical amendments combined to remediate soil contaminated by zinc and cadmium[J]. Ecology and Environmnet, 2005, 14(5):654-657.
[38] 周鸣, 汤红妍, 朱书法, 等. EDTA强化电动力学修复重金属复合污染土壤[J]. 环境工程学报, 2014, 8(3):1198-1202.
ZHOU M, TANG H Y, ZHU S F, et al. EDTA enhanced electrodynamics to remediate soil contaminated by heavy metals[J]. Environmental Engineering Journal, 2014, 8(3):1198-1202.
[39] 吴桐. 电动修复铬污染高岭土及铬渣污染土试验研究 [D]. 北京: 中国地质大学, 2013.
WU T. Experimental study on electric remediation of chromium-contaminated kaolin and chromium-contaminated soil [D]. Beijing: China University of Geosciences, 2013.
[40] Yuan L, Li H, Xu X, et al. Electrokinetic remediation of heavy metals contaminated kaolin by a cnt-covered polyethylene terephthalate yarn cathode[J]. Electrochimica Acta, 2016, 213:140-147. doi: 10.1016/j.electacta.2016.07.081
-